The Standard Template Library

Alexander Stepanov
Silicon Graphics Inc.
2011 N. Shoreline Blvd.
Mt. View, CA 94043
Stepanov@mti.sgi.com

Meng Lee
Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304
lee@hpl.hp.com

October 31, 1995
Copyright © 1994 Hewlett-Packard Company

Windows(TM) Help Version © 24 January 1996 - Berrie Bloem
100545.2530@compuserve.com

Permission to use, copy, modify, distribute and sell this document for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation.
The Standard Template Library (STL) is available for anonymous FTP at butler.hpl.hp.com and mirror sites.
1 Introduction
2 Structure of the library
3 Requirements
4 Core components
5 lterators
6 Function objects
7 Allocators
8 Containers
9 Stream iterators
10 Algorithms
11 Adaptors
12 Memory Handling Primitives
13 Bibliography

1 Introduction

The Standard Template Library provides a set of well structured generic C++ components that work together in a
seamless way. Special care has been taken to ensure that all the template algorithms work not only on the data
structures in the library, but also on built-in C++ data structures. For example, all the algorithms work on regular
pointers. The orthogonal design of the library allows programmers to use library data structures with their own
algorithms, and to use library algorithms with their own data structures. The well specified semantic and complexity
requirements guarantee that a user component will work with the library, and that it will work efficiently. This
flexibility ensures the widespread utility of the library.

Another important consideration is efficiency. C++ is successful because it combines expressive power with
efficiency. Much effort has been spent to verify that every template component in the library has a generic
implementation that performs within a few percentage points of the efficiency of the corresponding hand coded
routine.

The third consideration in the design has been to develop a library structure that, while being natural and easy to
grasp, is based on a firm theoretical foundation.

2 Structure of the library

The library contains five main kinds of components:

¢ algorithm: defines a computational procedure.

® container: manages a set of memory locations.

® iterator: provides a means for an algorithm to traverse through a container.

e function object: encapsulates a function in an object for use by other components.
® adaptor: adapts a component to provide a different interface.

Such decomposition allows us to dramatically reduce the component space. For example, instead of providing a
search member function for every kind of container we provide a single version that works with all of them as long
as a basic set of requirements is satisfied.

The following description helps clarify the structure of the library. If software components are tabulated as a three-
dimensional array, where one dimension represents different data types (e.g. int, double), the second dimension
represents different containers (e.g. vector, linked-list, file), and the third dimension represents different algorithms
on the containers (e.g. searching, sorting, rotation), if i, j, and k are the size of the dimensions, then 1*j*k different
versions of code have to be designed. By using template functions that are parameterized by a data type, we need
only j*k versions. Further, by making our algorithms work on different containers, we need merely j+k versions.
This significantly simplifies software design work and also makes it possible to use components in the library
together with user defined components in a very flexible way. A user may easily define a specialized container class
and use the library's sort function to sort it. A user may provide a different comparison function for the sort either as
a regular pointer to a comparison function, or as a function object (an object with an operator() defined) that does the
comparisons. If a user needs to iterate through a container in the reverse direction, the reverse_iterator adaptor
allows that.

The library extends the basic C++ paradigms in a consistent way, so it is easy for a C/C++ programmer to start using
the library. For example, the library contains a merge template function. When a user has two arrays a and b to be
merged into c it can be done with:

int a[1000];
int b[2000];
int c[3000];

merge (a, a + 1000, b, b + 2000, c);
When a user wants to merge a vector and a list (both of which are template classes in the library) and put the result

into a freshly allocated uninitialized storage it can be done with:

vector<Employee> a;
list<Employee> b;

, (Employee*)O0);
)

),
c));

Employee* ¢ = allocate(a.size() + b.size()
merge (a.begin(), a.end(), b.begin(), b.end
raw _storage iterator<Employee*, Employee>(

where begin() and end() are member functions of containers that return the right types of iterators or pointer-like
objects that allow the merge to do the job and raw_storage iterator is an adapter that allows algorithms to put results
directly into uninitialized memory by calling the appropriate copy constructor.

In many cases it is useful to iterate through input/output streams in the same way as through regular data structures.
For example, if we want to merge two data structures and then store them in a file, it would be nice to avoid creation
of an auxiliary data structure for the result, instead storing the result directly into the corresponding file. The library
provides both istream_iterator and ostream_iterator template classes to make many of the library algorithms work
with I/O streams that represent homogenous aggregates of data. Here is a program that reads a file of integers from
the standard input, removes all those that are divisible by its command argument, and writes the result to the

standard output:

main (int argc, char** argv) {
if (argc != 2) throw("usage: remove if divides integer\n");

remove copy if(istream iterator<int>(cin), istream iterator<int>(),
ostream iterator<int>(cout, "\n"),
notl (bind2nd (modulus<int> (), atoi(argv([1l])))):

}

All the work is done by remove copy_if which reads integers one by one until the input iterator becomes equal to
the end-of-stream iterator that is constructed by the constructor with no arguments. (In general, all the algorithms
work in a "from here to there" fashion taking two iterators that signify the beginning and the end of the input.) Then
remove_copy_if writes the integers that pass the test onto the output stream through the output iterator that is bound
to cout. As a predicate, remove _copy_if uses a function object constructed from a function object, modulus<int>,
which takes i and j and returns 1%;j, as a binary predicate and makes it into a unary predicate by using bind2nd to
bind the second argument to the command line argument, atoi(argv[1]). Then the negation of this unary predicate is
obtained using function adaptor not1.

A somewhat more realistic example is a filter program that takes a file and randomly shuffles its lines.

main (int argc, char**) {
if (argc != 1) throw("usage: shuffle\n");
vector<string> v;
copy (istream iterator<string>(cin), istream iterator<string>(),
inserter (v, v.end())):;

random_shuffle(v.begin(), v.end());
copy (v.begin(), v.end(), ostream iterator<string>(cout)):;

}

In this example, copy moves lines from the standard input into a vector, but since the vector is not pre- allocated it
uses an insert iterator to insert the lines one by one into the vector. (This technique allows all of the copying
functions to work in the usual overwrite mode as well as in the insert mode.) Then random_shuffle shuffles the
vector and another call to copy copies it onto the cout stream.

3 Requirements

To ensure that the different components in a library work together, they must satisfy some basic requirements.
Requirements should be as general as possible, so instead of saying "class X has to define a member function
operator++(), " we say "for any object x of class X, ++x is defined." (It is unspecified whether the operator is a
member or a global function.) Requirements are stated in terms of well-defined expressions, which define valid
terms of the types that satisfy the requirements. For every set of requirements there is a table that specifies an initial
set of the valid expressions and their semantics. Any generic algorithm that uses the requirements has to be written
in terms of the valid expressions for its formal type parameters.

If an operation is required to be linear time, it means no worse than linear time, and a constant time operation
satisfies the requirement.

In some cases we present the semantic requirements using C++ code. Such code is intended as a specification of
equivalence of a construct to another construct, not necessarily as the way the construct must be implemented
(although in some cases the code given is unambiguously the optimum implementation).

4 Core components

This section contains some basic template functions and classes that are used throughout the rest of the library.
4.1 Operators
4.2 Pair

4.1 Operators

To avoid redundant definitions of operator!= out of operator== and operators>, <=, and >= out of operator< the
library provides the following:

template<class T1l, class T2>

inline bool operator!=(const Tl& x, const T2& y) {
return ! (x == y);

}

template<class T1l, class T2>

inline bool operator>(const Tl& x, const T2& y) {
return y < x;

}

template<class T1l, class T2>

inline bool operator<=(const Tl& x, const T2& y) {
return ! (y < x);

}

template<class T1l, class T2>

inline bool operator>=(const Tl& x, const T2& y) {
return ! (x < y);

Source files: function.h

4.2 Pair

The library includes templates for heterogeneous pairs of values.
template<class T1l, class T2>
struct pair {
Tl first;
T2 second;
pair () {}
pair (const Tl& x, const T2& y) : first(x), second(y) {}
bi
template<class T1l, class T2>
inline bool operator==(const pair<Tl, T2>& x, const pair<Tl, T2>& y) {

return x.first == y.first && x.second == y.second;
}

template<class T1l, class T2>
inline bool operator<(const pair<Tl, T2>& x, const pair<Tl, T2>& y) {

return x.first < y.first || (!(y.first < x.first) && x.second <
y.second) ;
}
The library provides a matching template function make pair to simplify their construction. Instead of saying, for
example,
return pair<int, double> (5, 3.1415926); // explicit types

one may say
return make pair(5, 3.1415926); // types are deduced

template<class T1l, class T2>
inline pair<Tl, T2> make pair(const Tl& x, const T2& y) {

return pair<Tl, T2>(x, V);

Source files: pairh

5 Iterators

Iterators are a generalization of pointers that allow a programmer to work with different data structures (containers)
in a uniform manner. To be able to construct template algorithms that work correctly and efficiently on different
types of data structures, we need to formalize not just the interfaces but also the semantics and complexity
assumptions of iterators. Iterators are objects that have operator* returning a value of some class or built-in type T
called a value type of the iterator. For every iterator type X for which equality is defined, there is a corresponding
signed integral type called the distance type of the iterator.

Since iterators are a generalization of pointers, their semantics is a generalization of the semantics of pointers in C+
+. This assures that every template function that takes iterators works with regular pointers. Depending on the
operations defined on them, there are five categories of iterators: input iterators, output iterators, forward iterators,
bidirectional iterators and random access iterators. Forward iterators satisfy all the requirements of the input and
output iterators and can be used whenever either kind is specified. Bidirectional iterators satisfy all the requirements
of the forward iterators and can be used whenever a forward iterator is specified. Random access iterators satisfy all
the requirements of bidirectional iterators and can be used whenever a bidirectional iterator is specified. There is an
additional attribute that forward, bidirectional and random access iterators might have, that is, they can be mutable
or constant depending on whether the result of the operator* behaves as a reference or as a reference to a constant.
Constant iterators do not satisfy the requirements for output iterators.

Table 1: Relations among iterator categories
Input

REandom access = Bidirectional =% Forward
Crutput

Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of the array,
so for any iterator type there is an iterator value that points past the last element of a corresponding container. These
values are called past-the-end values. Values of the iterator for which the operator* is defined are called
dereferenceable. The library never assumes that past-the-end values are dereferenceable. Iterators might also have
singular values that are not associated with any container. For example, after the declaration of an uninitialized
pointer x (as with int* x;), x should always be assumed to have a singular value of a pointer. Results of most
expressions are undefined for singular values. The only exception is an assignment of a non-singular value to an
iterator that holds a singular value. In this case the singular value is overwritten the same way as any other value.
Dereferenceable and past-the-end values are always non-singular.

An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of operator+
+ to i that makes i == j. If i and j refer to the same container, then either j is reachable from i, or 1 is reachable
from7j, or both (1 == 7).

Most of the library's algorithmic templates that operate on data structures have interfaces that use ranges. A range is
a pair of iterators that designate the beginning and end of the computation. A range [i, i) is an empty range; in
general, a range [i, j) refers to the elements in the data structure starting with the one pointed to by i and up to but
not including the one pointed to by j. Range [i, j) is valid if and only if j is reachable from i. The result of the
application of the algorithms in the library to invalid ranges is undefined.

All the categories of iterators require only those functions that are realizable for a given category in constant time
(amortized). Therefore, requirement tables for the iterators do not have a complexity column.

In the following sections, we assume: a and b are values of X, n is a value of the distance type Distance, u, tmp, and
m are identifiers, r and s are lvalues of X, t is a value of value type T.

5.1 Input iterators

5.2 Output iterators

5.3 Forward iterators

5.4 Bidirectional iterators

5.5 Random access iterators

5.6 Iterator tags

5.7 lterator operations

Source files: iteratorh

5.1 Input iterators

A class or a built-in type X satisfies the requirements of an input iterator for the value type T if the following
expressions are valid:

Table 2: Input iterator requirements

expression return type operational semantics assertion/note
pre/post-condition
X (a) X (a)isacopyofa.
note: a destructor is assumed.
X u(a); post: uis acopyofa.
X u = a;y
u=a X& post: uisacopyofa.
a ==> convertible to bool if a is a copy of b, then a == D returns
true
== is an equivalence relation over the domain
of ==
a !l=5>D convertible to bool ' (a == b)
*a convertible to T pre: a is dereferenceable.

*b.

++r

end.

X&

(void) r++ void

*r++

If a is a copy of b, then *a is equivalent to

pre: r is dereferenceable.
Post: r is dereferenceable or r is past-the-

(void) ++r

{X tmp = r;
++r;
return tmp; }

Note: For input iterators, there are no requirements on the type or value of r++ beyond the requirement that *r++
works appropriately. In particular, r == s does not imply ++r == ++s. (Equality does not guarantee the
substitution property or referential transparency.) As for ++r, there are no more requirements on the values
of any copies of r except that they can be safely destroyed or assigned to. After executing ++r, copies of (the
previous) r are not required to be in the domain of ==. Algorithms on input iterators should never attempt to
pass through the same iterator twice. They should be single pass algorithms. Value type T is not required to
be an Ivalue type. These algorithms can be used with istreams as the source of the input data through the

istream iterator class.

5.2 Output iterators
A class or a built-in type X satisfies the requirements of an output iterator if the following expressions are valid:

Table 3: Output iterator requirements

expression return type operational semantics assertion/note
pre/post-condition

X (a) *a = t isequivalentto *X(a) = t.
note: a destructor is assumed.

X u(a);

X u = ay

*a = t result is not used
++r X&

r++ X or X&

Note: The only valid use of an operator* is on the left side of the assignment statement. Assignment through the
same value of the iterator happens only once. Algorithms on output iterators should never attempt to pass
through the same iterator twice. They should be single pass algorithms. Equality and inequality are not
necessarily defined. Algorithms that take output iterators can be used with ostreams as the destination for
placing data through the ostream_iterator class as well as with insert iterators and insert pointers. In
particular, the following two conditions should hold.: first, any iterator value should be assigned through
before it is incremented (this is, for an output iterator i, i++, i++ ; is not a valid code sequence), second, any
value of an output iterator may have at most one active copy at any given time (for example, i =j; *++i = a;
* = b, is not a valid code sequence).

5.3 Forward iterators
A class or a built-in type X satisfies the requirements of a forward iterator if the following expressions are valid:

Table 4: Forward iterator requirements

expression return type operational semantics assertion/note
pre/post-condition

X u; note: u might have a singular value.
note: a destructor is assumed.

X () note: X () might be singular.
X (a) a == (a) .
X u(a); X u; u = a; post:u == a.
X u = a;
a==> convertible to bool == is an equivalence relation.
a !'=5b convertible to bool ! (a == Db)
r = a X& post: r == a.
*a convertible to T pre: a is dereferenceable.
a == bimplies *a == *Db.
If X is mutable, *a = t is valid.
++r X& pre: r is dereferenceable.
post: r is dereferenceable or r is past-the-end.
r == s and r is dereferenceable implies ++r ==
t+s. &r == &++r.
r++ X {X tmp = r;
++r1;

return tmp; }

Note: The fact that r == s implies ++r == ++s (Which is not true for input and output iterators) and the removal
on the restrictions on the number of the assignments through the iterator (which applies to output iterators)
allows the use of multi-pass one-directional algorithms with forward iterators.

5.4 Bidirectional iterators

A class or a built-in type X satisfies the requirements of a bidirectional iterator if to the table that specifies forward
iterators we add the following lines:

Table 5: Bidirectional iterator requirements (in addition to forward iterator)

expression return type operational semantics assertion/note
pre/post-condition
--r X& pre: there exists s such that r == ++s.
post: s is dereferenceable.
-—(++r) ==
--r == —--simpliesr ==
&r == &—-r.
r—-- X {X tmp = r;
——r;

return tmp; }

Note: Bidirectional iterators allow algorithms to move iterators backward as well as forward.

5.5 Random access iterators

A class or a built-in type X satisfies the requirements of a random access iterator if to the table that specifies
bidirectional iterators we add the following lines:

Table 6: Random access iterator requirements (in addition to bidirectional iterator)

expression return type operational semantics assertion/note
pre/post-condition

r += n X& { Distance m = n;

if (m >= 0)

while (m--) ++r;

else

while (m++) --r;

return r; }
a t+tn X {X tmp = a; a +n==n+ a.
n + a return tmp += n; }
r -—=n X& return r += -n;
a - n X {X tmp = a;

return tmp -= n; }
b - a Distance pre: there exists a value n of
Distance suchthata + n = b.

b==a+ (b - a).

aln] convertible to T *(a + n)
a <b convertibletobool b - a > 0 < 1is a total ordering relation
a >b convertible to bool b < a > is a total ordering relation opposite
to <.
a > b convertible to bool '(a < b)
a <=b convertible to bool ''(a > b)

5.6 Iterator tags

To implement algorithms only in terms of iterators, it is often necessary to infer both of the value type and the
distance type from the iterator. To enable this task it is required that for an iterator i of any category other than
output iterator, the expression value type(i) returns (T*)(0) and the expression distance type(i) returns
(Distance*) (0). For output iterators, these expressions are not required.

5.6.1 Examples of using iterator tags

5.6.2 Library defined primitives

5.6.1 Examples of using iterator tags

For all the regular pointer types we can define value type and distance type with the help of:
template<class T>
inline T* value type(const T*) { return (T*) (0); }
template<class T>
inline ptrdiff t* distance type(const T*) { return (ptrdiff t*) (0); }

Then, if we want to implement a generic reverse function, we do the following:

template<class Bidirectionallterator>
inline void reverse (Bidirectionallterator first, Bidirectionallterator
last) |

__reverse(first, last, value type(first), distance type(first));

}

where reverse is defined as:

template<class Bidirectionallterator, class T, class Distance>
void reverse(Bidirectionallterator first, Bidirectionallterator last,
T*, Distance*) {

Distance n;
distance (first, last, n); // see Iterator operations section
——n;
while (n > 0) {
T tmp = *first;
*first++ = *--last;
*last = tmp;
n -= 2;

}

If there is an additional pointer type huge such that the difference of two _ huge pointers is of the type long long,
we define:
template<class T>

inline T* value type(const T __ huge *) { return (T*) (0); }
template<class T>

inline long long* distance type(const T huge *) { return (long long¥*)
(0): 1}

It is often desirable for a template function to find out what is the most specific category of its iterator argument, so
that the function can select the most efficient algorithm at compile time. To facilitate this, the library introduces
category tag classes which are used as compile time tags for algorithm selection. They are: input_iterator tag,
output iterator tag, forward iterator tag, bidirectional iterator tag and random_access_iterator tag. Every iterator
i must have an expression iterator category(i) defined on it that returns the most specific category tag that describes
its behavior. For example, we define that all the pointer types are in the random access iterator category by:

template<class T>

inline random access_iterator tag iterator category(const T*) ({

return random access iterator tag();

}

For a user-defined iterator BinaryTreelterator, it can be included into the bidirectional iterator category by saying:
template<class T>
inline bidirectional iterator tag iterator category(
const BinaryTreelterator<T>&) {
return bidirectional iterator tag();

}
If a template function evolve is well defined for bidirectional iterators, but can be implemented more efficiently for

random access iterators, then the implementation is like:

template<class Bidirectionallterator>
inline void evolve (Bidirectionallterator first, Bidirectionallterator

last) {
evolve (first, last, iterator category(first));

}
template<class BidirectionalIterator>
void evolve (Bidirectionallterator first, BidirectionalIterator last,
bidirectional iterator tag) {
//... more generic, but less efficient algorithm

}

template<class RandomAccessIterator>
void evolve (RandomAccessIterator first, RandomAccessIterator last,

random access_iterator tag) {
//... more efficient, but less generic algorithm

5.6.2 Library defined primitives

To simplify the task of defining the iterator category, value type and distance type for user definable iterators, the
library provides the following predefined classes and functions:

// iterator tags

struct input iterator tag {};

struct output iterator tag {};

struct forward iterator tag {};
struct bidirectional iterator tag ({};
struct random access iterator tag {};

// iterator bases

template<class T, class Distance = ptrdiff t>

struct input iterator {};

struct output iterator {};

// output iterator is not a template because output iterators
// do not have either value type or distance type defined.
template<class T, class Distance = ptrdiff t>

struct forward iterator {};

template<class T, class Distance = ptrdiff t>

struct bidirectional iterator ({};

template<class T, class Distance = ptrdiff t>

struct random access iterator ({};

// iterator category
template<class T, class Distance>
inline input iterator tag iterator category(const input iterator<T,
Distance>&) {
return input iterator tag();

}
inline output iterator tag iterator category(const output iteratoré&) {
return output iterator tag();

}
template<class T, class Distance>
inline forward iterator tag iterator category(const forward iterator<T,
Distance>&) {
return forward iterator tag();

}
template<class T, class Distance>
inline bidirectional iterator tag iterator category(const
bidirectional iterator<T, Distance>&) {
return bidirectional iterator tag();

}

template<class T, class Distance>

inline random access_iterator tag iterator category(const

random access_iterator<T, Distance>&) {
return random access iterator tag();

}

template<class T>

inline random access_iterator tag iterator category(const T*) {
return random access iterator tag();

}

// value type of iterator

template<class T, class Distance>

inline T* value type(const input iterator<T, Distance>&) {
return (T*) (0);

}

template<class T, class Distance>

inline T* value type(const forward iterator<T, Distance>&) {
return (T*) (0);

}

template<class T, class Distance>

inline T* value type(const bidirectional iterator<T, Distance>&) {
return (T*) (0);

}

template<class T, class Distance>

inline T* value type(const random access iterator<T, Distance>&) {
return (T*) (0);

}

template<class T>

inline T* value type(const T*) { return (T*) (0); }
// distance type of iterator

template<class T, class Distance>
inline Distance* distance_ type (const input iterator<T, Distance>&) {

return (Distance*) (0);

}

template<class T, class Distance>
inline Distance* distance type (const forward iterator<T, Distance>&) {

return (Distance*) (0);

}

template<class T, class Distance>
inline Distance* distance type (const bidirectional iterator<T,
Distance>&) {

return (Distance*) (0);

}
template<class T, class Distance>
inline Distance* distance type (const random access iterator<T,
Distance>&) {
return (Distance*) (0);
}
template<class T>
inline ptrdiff t* distance type(const T*) {
return (ptrdiff t*) (0);
}

If a user wants to define a bidirectional iterator for some data structure containing double and such that it works on a
large memory model of a computer, it can be done by defining:

class MyIterator : public bidirectional iterator<double, long> {
// code implementing ++, etc.
}i

Then there is no need to define iterator category, value type,and distance type on

MyIterator.

Source files: iteratorh

5.7 Iterator operations

Since only random access iterators provide + and - operators, the library provides two template functions advance
and distance. These functions use + and - for random access iterators (and are, therefore, constant time for them); for
input, forward and bidirectional iterators they use ++ to provide linear time implementations. advance takes a
negative argument n for random access and bidirectional iterators only. advance increments (or decrements for
negative n) iterator reference i by n. distance increments n by the number of times it takes to get from first to
last.

template<class Inputlterator, class Distance>

inline void advance (InputIterator& i, Distance n);

template<class InputlIterator, class Distance>

inline void distance (InputIterator first, InputlIterator last, Distances&

n) ;

distance must be a three argument function storing the result into a reference instead of returning the result
because the distance type cannot be deduced from built-in iterator types such as int*.

Source files: algobase.h

6 Function objects

Function objects are objects with an operator() defined. They are important for the effective use of the library. In the
places where one would expect to pass a pointer to a function to an algorithmic template, the interface is specified to
accept an object with an operator() defined. This not only makes algorithmic templates work with pointers to
functions, but also enables them to work with arbitrary function objects. Using function objects together with
function templates increases the expressive power of the library as well as making the resulting code much more
efficient. For example, if we want to have a by-element addition of two vectors a and b containing double and put
the result into a we can do:

transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>()):;
If we want to negate every element of a we can do:

transform(a.begin(), a.end(), a.begin(), negate<double>());
The corresponding functions will inline the addition and the negation.

To enable adaptors and other components to manipulate function objects that take one or two arguments it is
required that they correspondingly provide typedefs argument type and result_type for function objects that take
one argument and first_argument type, second argument type, and result_type for function objects that take two
arguments.

6.1 Base

6.2 Arithmetic operations
6.3 Comparisons

6.4 Logical operations

Source files: function.h

6.1 Base

The following classes are provided to simplify the typedefs of the argument and result types:
template<class Arg, class Result>
struct unary function {

typedef Arg argument type;
typedef Result result type;
i
template<class Argl, class Arg2, class Result>
struct binary function ({
typedef Argl first argument type;
typedef Arg2 second argument type;
typedef Result result type;
i

6.2 Arithmetic operations

The library provides basic function object classes for all of the arithmetic operators in the language.
template<class T>
struct plus : binary function<T, T, T> {
T operator () (const T& x, const T& y) const { return x + y;
i
template<class T>
struct minus : binary function<T, T, T> {
T operator () (const T& x, const T& y) const { return x - y;
i
template<class T>
struct times : binary function<T, T, T> {
T operator () (const T& x, const T& y) const { return x * y;
i
template<class T>
struct divides : binary function<T, T, T> {
T operator () (const T& x, const T& y) const { return x / y;
bi
template<class T>
struct modulus : binary function<T, T, T> {
T operator () (const T& x, const T& y) const { return x

o

yi
bi
template<class T>
struct negate : unary function<T, T> ({
T operator () (const T& x) const { return -x; }

i

6.3 Comparisons

The library provides basic function object classes for all of the comparison operators in the language.
template<class T>

struct equal to

i

bool operator () (const T& x,

template<class T>

struct not equal to

}i

bool operator () (const T& x,

template<class T>

struct greater

i

bool operator () (const T& x,

template<class T>

struct less

}i

bool operator () (const T& x,

template<class T>

struct greater equal

i

bool operator () (const T& x,

template<class T>

struct less equal

i

bool operator () (const T& x,

const T&

const T&

const T&

const T&

binary function<T,

const T&

binary function<T, T,

const T&

binary function<T, T, bool> {

y) const {

binary function<T, T, bool> {

y) const {

binary function<T, T, bool> ({

y) const {

binary function<T, T, bool> ({

y) const {

T, bool> {

y) const {

bool> {
y) const {

return

return

return

return

return

return

==vy; }

>=y; }

<=vy; }

6.4 Logical operations
template<class T>
struct logical and : binary function<T, T, bool> ({
bool operator () (const T& x, const T& y) const { return x && y; }
bi
template<class T>
struct logical or : binary function<T, T, bool> {

bool operator () (const T& x, const T& y) const { return x || y; }
bi
template<class T>
struct logical not : unary function<T, bool> {

bool operator () (const T& x) const { return !x; }
bi

7 Allocators

One of the common problems in portability is to be able to encapsulate the information about the memory model.
This information includes the knowledge of pointer types, the type of their difference, the type of the size of objects
in this memory model, as well as the memory allocation and deallocation primitives for it. STL addresses this
problem by providing a standard set of requirements for allocators, which are objects that encapsulate this
information. All of the containers in STL are parameterized in terms of allocators. That dramatically simplifies the
task of dealing with multiple memory models.

7.1 Allocator requirements

7.2 The default allocator

Source files: defalloc.h

7.1 Allocator requirements

In the following table, we assume X is an allocator class for objects of type T, a is a value of X, n is of type
X:size type, p is of type X::pointer, 1 is of type X::reference and s is of type X::const reference. All the operations
on the allocators are expected to be amortized constant time.

Table 7: Allocator requirements

expression return type assertion/note
pre/post-condition

X::value type T

X::reference Ivalue of T

X::const reference const lvalue of T

X::pointer pointer to T type the result of operator* of values of
X::pointer is of reference.

X::const pointer pointer to const T type the result of operator* of values of

X::const pointerisof
const reference;

it is the same type of pointer as X::pointer, in
particular,

sizeof (X::const pointer) ==
sizeof (X::pointer)

X::size type unsigned integral type the type that can represent the size of the
largest object in the memory model.
X::difference type signed integral type the type that can represent the difference
between any two pointers in the memory
model.
X a; note: a destructor is assumed.
a.address (r) pointer * (a.address (r)) == r
a.const address(s) const pointer *(a.address (s)) == s
a.allocate (n) X::pointer memory is allocated for n objects of type T
but objects are not constructed.
allocate may raise an appropriate exception.
a.deallocate (p) result is not used all the objects in the area pointed by p should
be
destroyed prior to the call of the deallocate.
construct (p, a) void post: *p == a
destroy (p) void the value pointed by p is destroyed.
a.init page size() X::size type the returned value is the optimal value for an
initial
buffer size of the given type. It is assumed
that if k is
returned by init page size, tisthe
construction

time for T, and u is the time that it takes to do
allocate (k) ,thenk * t is much
greater than u.

a.max_size|() X::size type the largest positive value of
X::difference type

pointer belongs to the category of mutable random access iterators referring to T. const pointer belongs
to the category of constant random access iterators referring to T. There is a conversion defined from pointer to
const pointer.

For any allocator template Alloc there is a specialization for type void. Alloc<void> has only constructor, destructor,
and Alloc<void>::pointer defined. Conversions are defined from any instance of Alloc<T>::pointer into
Alloc<void>::pointer and back so that for any p, p == Alloc<T>::pointer(Alloc<void>::pointer(p)).

7.2 The default allocator

template<class T>

class allocator {

public:
typedef T* pointer;
typedef const T* const pointer;
typedef T& reference;
typedef const T& const reference;
typedef T value type;
typedef size t size type;
typedef ptrdiff t difference type;
allocator ()
~allocator();
pointer address (reference x);
const pointer const address(const reference x);
pointer allocate(size type n);
void deallocate (pointer p);
size type init page size();
size type max size();

bi

class allocator<void> {

public:
typedef void* pointer;
allocator ()
~allocator();

}i

In addition to allocator the library vendors are expected to provide allocators for all supported memory models.

8 Containers

Containers are objects that store other objects. They control allocation and deallocation of these objects through
constructors, destructors, insert and erase operations.

In the following table, we assume X is a container class containing objects of type T, a and b are values of X, u is an
identifier and r is a value of X&.

Table 8: Container requirements

expression return type operational semantics assertion/note

complexity

pre/post-condition

X::value type T
X::reference
X::const reference
X::pointer a pointer type pointing to pointer to T in the
memory compile time

X::reference model used by the
container

X::iterator
iterator

output iterator.

X::const iterator
any

except

X::difference type
distance

X::iterator and
X::size type
represent

value of

iterator type pointing to
compile time
X::reference

iterator type pointing to
compile time
X::const reference

signed integral type
compile time

X::const iterator

unsigned integral type
compile time

difference type

constant

constant

an iterator of any
category except
a constant iterator of

iterator category

output iterator.

is identical to the

type of

size type can

any non-negative

post: u.size ()

X () .size() ==
a == X(a)
post:u == a

(&a) =>~X ()

is applied
a and all

returned.

a.begin ()

a.end()

a ==>
relation.

defined in

section.

a.size ()

a.max size()
largest

a.empty ()

a<b
values of T'.

relation.

algorithms section.

a>>b
a <=b
a > b

a.swap (b)

result is not used
linear

iterator;

const iterator for

constant a

iterator;

const_iterator for

constant a

convertible to bool
linear

convertible to bool
X&

size type

size type
constant

convertible to bool

convertible to bool
linear

a.size() == b.size()
&& equal (a.begin(),

a.end(), b.begin())

''(a == b)

if (&r !'= &a) {
(&) —>X::~X();
new (&r) X (a);
return r;

}

size type n = 0;
distance (a.begin(),
a.end(), n);

return n;

a.size() ==

lexicographical
compare (a.begin (),

a.end(),

lexicographical compare

convertible to bool
convertible to bool
convertible to bool

void

b.begin (),

b.end())
b < a

'(a > Db)
!'(a < Db)

swap (a, b)

post: a.size ()
note: the destructor
to every element of

the memory is

== is an equivalence
note: equal is

the algorithms

post: r == a

size () of the

possible container.

pre: < is defined for

< is a total ordering

is defined in the

The member function size() returns the number of elements in the container. Its semantics is defined by the rules of
constructors, inserts, and erases.

begin () returns an iterator referring to the first element in the container. end() returns an iterator which is the
past-the-end value.

If the iterator type of a container belongs to the bidirectional or random access iterator categories, the container is
called reversible and satisfies the following additional requirements:

Table 9: Reversible container requirements (in addition to container)

expression return type operational semantics

complexity
X::reverse iterator reverse iterator<iterator,
value type, compile time

reference,
difference type>

for random access iterator

reverse bidirectional iterator<iterator,
value type, reference,
difference_ type>
for bidirectional iterator

X::const reverse iterator
reverse iterator<const iterator, compile time
value type,
const reference,
difference type>
for random access iterator

reverse bidirectional iterator<
const_ iterator,
value type,
const reference,
difference type>
for bidirectional iterator

a.rbegin () reverse_ iterator; reverse iterator (end())
constant
const reverse iterator
for constant a

a.rend() reverse iterator; reverse iterator (begin())
constant
const reverse iterator
for constant a

.1 Sequences

.2 Associative containers

00 (oo

8.1 Sequences

A sequence is a kind of container that organizes a finite set of objects, all of the same type, into a strictly linear
arrangement. The library provides three basic kinds of sequence containers: vector, list, and deque. It also provides
container adaptors that make it easy to construct abstract data types, such as stacks or queues, out of the basic
sequence kinds (or out of other kinds of sequences that the user might define).

In the following two tables, X is a sequence class, a is value of X, i and j satisfy input iterator requirements, [i, j) is a
valid range, n is a value of X::size type, p is a valid iterator to a, q is a dereferenceable iterator to a, [gl, g2) isa
valid range in a, t is a value of X: : value type.

The complexities of the expressions are sequence dependent.

Table 10: Sequence requirements (in addition to container)

expression return type assertion/note
pre/post-condition

X(n, t) post: size () == n
X a(n, t); constructs a sequence with n copies of t .
X(i, 7J) post: size () == distance between i and j .
X a(i, 3);: constructs a sequence equal to the range [1, 7J) .
a.insert(p, t) iterator inserts a copy of t before p.

the return value points to the inserted copy.
a.insert(p, n, t) result is not used inserts n copies of t before p.
a.insert(p, 1, 7J) result is not used inserts copies of elements in [1, j) before p.
a.erase (q) result is not used erases the element pointed to by g.
a.erase (qgl, g2) result is not used erases the elements in the range [gl, g2) .

vector, list, and deque offer the programmer different complexity tradeoffs and should be used
accordingly. vector is the type of sequence that should be used by default. 1ist should be used when there
are frequent insertions and deletions from the middle of the sequence. deque is the data structure of choice when
most insertions and deletions take place at the beginning or at the end of the sequence.

iterator and const iterator types for sequences have to be at least of the forward iterator category.

Table 11: Optional sequence operations
expression return type operational semantics container

a.front () reference; *a.begin () vector, list, deque
const reference
for constant a

a.back () reference; *a. (—-—end()) vector, list, deque
const reference
for constant a

a.push front(t) woid a.insert (a.begin(), t) list,deque

a.push back(t) void a.insert(a.end (), t) vector, list, deque
a.pop_front () void a.erase (a.begin()) list, deque

a.pop back() void a.erase(-—-a.end()) vector, list, deque
aln] reference; *(a.begin() + n) vector, deque

const reference
for constant a

All the operations in the above table are provided only for the containers for which they take constant time.

8.1.1 Vector
8.1.2 List
8.1.3 Deque

Source files: vector.
list.h
deque.h

8.1.1 Vector

vector is a kind of sequence that supports random access iterators. In addition, it supports (amortized) constant
time insert and erase operations at the end; insert and erase in the middle take linear time. Storage management is
handled automatically, though hints can be given to improve efficiency.

template<class T, template<class U> class Allocator = allocator>

class vector {

public:
// typedefs:

typedef iterator;

typedef const iterator;

typedef Allocator<T>::pointer pointer;

typedef Allocator<T>::reference reference;

typedef Allocator<T>::const reference const reference;
typedef size type;

typedef difference type;

typedef T value type;

typedef reverse iterator;

typedef const reverse iterator;

// allocation/deallocation:

vector () ;
vector (size type n, const T& value = T());
vector (const vector<T, Allocator>& x);

template<class InputlIterator>
vector (InputIterator first, Inputlterator last);

~vector () ;

vector<T, Allocator>& operator=(const vector<T, Allocator>& x);
void reserve(size type n);

void swap (vector<T, Allocator>& x);

// accessors:

iterator begin();

const iterator begin() const;
iterator end();

const_ iterator end() const;
reverse iterator rbegin();

const reverse iterator rbegin();
reverse iterator rend();

const reverse iterator rend();
size type size() const;

size type max size() const;

size type capacity() const;

bool empty() const;

reference operator([] (size type n);
const reference operator[] (size type n) const;
reference front();

const reference front() const;
reference back();

const reference back() const;
// insert/erase:

void push back(const T& x);

iterator insert(iterator position, const T& x = T());

void insert (iterator position, size type n, const T& x);
template<class InputIterator>

void insert (iterator position, Inputlterator first, Inputlterator
last);

void pop back();

void erase (iterator position);

void erase(iterator first, iterator last);

i

template<class T, class Allocator>

bool operator==(const vector<T, Allocator>& x, const vector<T,
Allocator>é& vy);

template<class T, class Allocator>

bool operator<(const vector<T, Allocator>& x, const vector<T, Allocator>&

y)i

iterator is a random access iterator referring to T. The exact type is implementation dependent and determined
byAllocator.

const iterator isa constant random access iterator referring to const T. The exact type is
implementation dependent and determined by Allocator. Itis guaranteed that there is a constructor for
const iteratoroutofiterator.

size type isan unsigned integral type. The exact type is implementation dependent and determined by
Allocator.

difference type is a signed integral type. The exact type is implementation dependent and determined by
Allocator.

The constructor template <class Inputlterator> vector(Inputlterator first, Inputlterator last) makes only N calls to the
copy constructor of T (where N is the distance between first and last) and no reallocations if iterators first and last
are of forward, bidirectional, or random access categories. It does at most 2N calls to the copy constructor of T and
logN reallocations if they are just input iterators, since it is impossible to determine the distance between first
and last and then do copying.

The member function capacity returns the size of the allocated storage in the vector. The member function reserve is
a directive that informs vector of a planned change in size, so that it can manage the storage allocation accordingly.
It does not change the size of the sequence and takes at most linear time in the size of the sequence. Reallocation
happens at this point if and only if the current capacity is less than the argument of reserve. After reserve, capacity is
greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity
otherwise. Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during the insertions that happen after reserve takes place
till the time when the size of the vector reaches the size specified by reserve.

insert causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all the
iterators and references before the insertion point remain valid. Inserting a single element into a vector is linear in
the distance from the insertion point to the end of the vector. The amortized complexity over the lifetime of a vector
of inserting a single element at its end is constant. Insertion of multiple elements into a vector with a single call of
the insert member function is linear in the sum of the number of elements plus the distance to the end of the vector.
In other words, it is much faster to insert many elements into the middle of a vector at once than to do the insertion
one at a time. The insert template member function preallocates enough storage for the insertion if the iterators first
and last are of forward, bidirectional or random access category. Otherwise, it does insert elements one by one and
should not be used for inserting into the middle of vectors.

erase invalidates all the iterators and references after the point of the erase. The destructor of T is called the
number of times equal to the number of the elements erased, but the assignment operator of T is called the number
of times equal to the number of elements in the vector after the erased elements.

To optimize space allocation, a specialization for bool is provided:

class vector<bool, allocator> {
public:

// bit reference:

class reference {

public:
~reference () ;
operator bool () const;
reference& operator=(const bool x);
void flip(); // flips the bit

}i

// typedefs:

typedef bool const reference;
typedef iterator;

typedef const iterator;

typedef size t size type;

typedef ptrdiff t difference type;
typedef bool value type;

typedef reverse iterator;

typedef const reverse iterator;

// allocation/deallocation:

vector () ;
vector (size type n, const bool& value = bool());
vector (const vector<bool, allocator>& x);

template<class Inputlterator>
vector (InputlIterator first, Inputlterator last);

~vector () ;

vector<bool, allocator>& operator=(const vector<bool, allocator>é&
x) ;

void reserve(size type n);

void swap (vector<bool, allocator>& x);

// accessors:

iterator begin();

const iterator begin() const;
iterator end();

const iterator end() const;
reverse iterator rbegin();
const reverse iterator rbegin();
reverse iterator rend();

const reverse iterator rend();
size type size() const;

size type max size() const;
size type capacity() const;

bool empty() const;

reference operator([] (size type n);

const reference operator|[] (size type n) const;
reference front():;

const reference front () const;

reference back();

const reference back() const;

// insert/erase:

void push back(const boolé& x);

iterator insert(iterator position, const bool& x = bool());

void insert (iterator position, size type n, const boolé& Xx);
template<class Inputlterator>

void insert (iterator position, InputlIterator first, Inputlterator
last) ;

void pop back();

void erase (iterator position);

void erase(iterator first, iterator last);

}i

void swap (vector<bool, allocator>::reference x,
vector<bool, allocator>::reference vy);

bool operator==(const vector<bool, allocator>& x,
const vector<bool, allocator>& vy);

bool operator<(const vector<bool, allocator>& x,
const vector<bool, allocator>& vy);

reference is a class that simulates the behavior of references of a single bit in vector<bool>.
Every implementation is expected to provide specializations of vector<bool> for all supported memory models.

At present, it is not possible to templatize a specialization. That is, we cannot write:
template<template<class U> class Allocator = allocator>
class vector<bool, Allocator> { /*... */ };

Therefore, only vector<bool, allocator> is provided.

8.1.2 List

1list is a kind of sequence that supports bidirectional iterators and allows constant time insert and erase operations
anywhere within the sequence, with storage management handled automatically. Unlike vectors and deques, fast
random access to list elements is not supported, but many algorithms only need sequential access anyway.
template<class T, template<class U> class Allocator = allocator>
class list {

public:
// typedefs:

typedef iterator;

typedef const iterator;

typedef Allocator<T>::pointer pointer;

typedef Allocator<T>::reference reference;

typedef Allocator<T>::const reference const reference;
typedef size type;

typedef difference type;

typedef T value type;

typedef reverse iterator;

typedef const reverse iterator;

// allocation/deallocation:

list();
list(size type n, const T& value = T());

template<class InputlIterator>
list (InputIterator first, Inputlterator last);

list (const 1ist<T, Allocator>& x);

~1list();

1ist<T, Allocator>& operator=(const 1ist<T, Allocator>& x);
void swap (list<T, Allocator>& x);

// accessors:

iterator begin();

const iterator begin() const;
iterator end();

const iterator end() const;
reverse iterator rbegin();
const reverse iterator rbegin();
reverse iterator rend();

const reverse iterator rend();
bool empty() const;

size type size() const;

size type max size() const;
reference front();

const reference front () const;
reference back();

const reference back() const;

// insert/erase:

void push front (const T& x);

void push back(const T& x);

iterator insert(iterator position, const T& x = T());

void insert (iterator position, size type n, const Té& X);
template<class Inputlterator>

void insert (iterator position, InputIterator first, Inputlterator
last) ;

void pop front();

void pop back();

void erase (iterator position);

void erase(iterator first, iterator last);

// special mutative operations on list:

void splice(iterator position, 1list<T, Allocator>& x);

void splice(iterator position, 1list<T, Allocator>& x, iterator 1i);
void splice(iterator position, 1ist<T, Allocator>& x, iterator
first, iterator last);

void remove (const T& value);

template<class Predicate>

void remove if (Predicate pred);

void unique () ;

template<class BinaryPredicate>

void unique (BinaryPredicate binary pred);

void merge (1ist<T, Allocator>& Xx);

template<class Compare>

void merge (1ist<T, Allocator>& x, Compare comp):;

void reverse () ;

void sort();

template<class Compare>

void sort (Compare comp) ;

bi

template<class T, class Allocator>

bool operator==(const 1ist<T, Allocator>& x, const 1list<T, Allocator>&
V)i

template<class T, class Allocator>

bool operator<(const 1ist<T, Allocator>& x, const 1list<T, Allocator>é&
2

iterator is a bidirectional iterator referring to T. The exact type is implementation dependent and determined by
Allocator.

const_ iterator isa constant bidirectional iterator referring to const T. The exact type is implementation
dependent and determined by Allocator. Itis guaranteed that there is a constructor for const iterator out
of iterator.

size type is an unsigned integral type. The exact type is implementation dependent and determined by
Allocator.

difference type is a signed integral type. The exact type is implementation dependent and determined by
Allocator.

insert does not affect the validity of iterators and references. Insertion of a single element into a list takes
constant time and exactly one call to the copy constructor of T. Insertion of multiple elements into a list is linear in
the number of elements inserted, and the number of calls to the copy constructor of T is exactly equal to the number
of elements inserted.

erase invalidates only the iterators and references to the erased elements. Erasing a single element is a constant
time operation with a single call to the destructor of T. Erasing a range in a list is linear time in the size of the range
and the number of calls to the destructor of type T is exactly equal to the size of the range. Since lists allow fast
insertion and erasing from the middle of a list, certain operations are provided specifically for them:

1ist provides three splice operations that destructively move elements from one list to another:

void splice (iterator position, 1list<T, Allocator>& x) inserts the contents of x before
position and x becomes empty. It takes constant time. The result is undefined if §x == this.

void splice(iterator position, 1list<T, Allocator>& x, iterator i) insertsan element
pointed to by i from list x before position and removes the element from x. It takes constant time. i is a valid
dereferenceable iterator of x. The result is unchanged if position == i orposition == ++1i.

void splice(iterator position, 1list<T, Allocator>& x, iterator first, iterator
last) inserts elements in the range [first, last) before position and removes the elements from x. It takes constant
timeif &x == this ; otherwise, it takes linear time. [first, last) is a valid range in x. The result is undefined if
position is an iterator in the range [first, last).

remove erases all the elements in the list referred by the list iterator i for which the following conditions hold: *i
== value, pred(*i) == true. remove is stable, that is, the relative order of the elements that are not
removed is the same as their relative order in the original list. Exactly size() applications of the corresponding
predicate are done.

unique erases all but the first element from every consecutive group of equal elements in the list. Exactly
size () - 1 applications of the corresponding binary predicate are done.

merge merges the argument list into the list (both are assumed to be sorted). The merge is stable, that is, for equal
elements in the two lists, the elements from the list always precede the elements from the argument list. x is empty
after the merge. At most size () + x.size() - 1 comparisons are done.

reverse reverses the order of the elements in the list. It is linear time.

sort sorts the list according to the operator< or a compare function object. It is stable, that is, the relative
order of the equal elements is preserved. Approximately NlogN comparisons are done where N is equal to
size ().

8.1.3 Deque

deque is a kind of sequence that, like a vector, supports random access iterators. In addition, it supports constant
time insert and erase operations at the beginning or the end; insert and erase in the middle take linear time. As with
vectors, storage management is handled automatically.

template<class T, template<class U> class Allocator = allocator>

class deque {

public:
// typedefs:

typedef iterator;

typedef const iterator;

typedef Allocator<T>::pointer pointer;

typedef Allocator<T>::reference reference;

typedef Allocator<T>::const reference const reference;
typedef size type;

typedef difference type;

typedef T value type;

typedef reverse iterator;

typedef const reverse iterator;

// allocation/deallocation:

deque () ;
deque (size_type n, const T& value = T());
deque (const deque<T, Allocator>& x);

template<class Inputlterator>
deque (InputIterator first, Inputlterator last);

~deque () ;
deque<T, Allocator>& operator=(const deque<T, Allocator>& x);
void swap (deque<T, Allocator>& x);

// accessors:

iterator begin();

const iterator begin() const;
iterator end();

const iterator end() const;
reverse iterator rbegin();

const reverse iterator rbegin();
reverse iterator rend();

const reverse iterator rend();
size type size() const;

size type max size() const;

bool empty() const;

reference operator([] (size type n);
const reference operator[] (size type n) const;
reference front():;

const reference front () const;
reference back();

const reference back() const;

// insert/erase:

void push front (const T& x);
void push back(const T& x);
iterator insert(iterator position, const T& x = T());
void insert (iterator position, size type n, const T& x);
template<class Inputlterator>
void insert (iterator position, InputlIterator first, Inputlterator
last);
void pop front();
void pop back();
void erase (iterator position);
void erase(iterator first, iterator last);
bi
template<class T, class Allocator>
bool operator==(const deque<T, Allocator>& x, const deque<T, Allocator>é&
y) i
template<class T, class Allocator>
bool operator<(const deque<T, Allocator>& x, const deque<T, Allocator>é&
y) i

iterator is arandom access iterator referring to T.The exact type is implementation dependent and
determined by Allocator.

const iterator isa constant random access iterator referring to const T. The exact type is implementation
dependent and determined by Allocator. Itis guaranteed that there is a constructor for const iterator
outof iterator.

size type is an unsigned integral type. The exact type is implementation dependent and determined by
Allocator.

difference_type is a signed integral type. The exact type is implementation dependent and determined by
Allocator.

insert in the middle of a deque invalidates all the iterators and references to the deque. insert and push at either
end of a deque invalidate all the iterators to the deque, but have no effect on the validity of all the references to the
deque. In the worst case, inserting a single element into a deque takes time linear in the minimum of the distance
from the insertion point to the beginning of the deque and the distance from the insertion point to the end of the
deque. Inserting a single element either at the beginning or end of a deque always takes constant time and causes a
single call to the copy constructor of T. That is, a deque is especially optimized for pushing and popping elements at
the beginning and end

erase in the middle of a deque invalidates all the iterators and references to the deque. erase and pop at either end
of a deque invalidate only the iterators and the references to the erased element. The number of calls to the
destructor is the same as the number of elements erased, but the number of the calls to the assignment operator is
equal to the minimum of the number of elements before the erased elements and the number of element after the
erased elements.

8.2 Associative containers

Associative containers provide an ability for fast retrieval of data based on keys. The library provides four basic
kinds of associative containers: set, multiset, map and multimap.

All of them are parameterized on Key and an ordering relation Compare that induces a total ordering on elements of
Key. In addition, map and multimap associate an arbitrary type T with the Key. The object of type Compare is called
the comparison object of a container.

In this section when we talk about equality of keys we mean the equivalence relation imposed by the comparison
and not the operator== on keys. That is, two keys k1 and k2 are considered to be equal if for the comparison object
comp, comp (k1, k2) == false && comp(k2, kl) == false.

An associative container supports unique keys if it may contain at most one element for each key. Otherwise, it
supports equal keys. set and map support unique keys. multiset and multimap support equal keys.

For set and multiset the value type is the same as the key type. For map and multimap it is equal to pair<const Key,
T>.

iterator of an associative container is of the bidirectional iterator category. insert does not affect the validity of
iterators and references to the container, and erase invalidates only the iterators and references to the erased
elements.

In the following table, X is an associative container class, a is a value of X, a_uniq is a value of X when X supports
unique keys, and a_eq is a value of X when X supports multiple keys, i and j satisfy input iterator requirements and
refer to elements of value type, [i, j) is a valid range, p is a valid iterator to a, q is a dereferenceable iterator to a,
[ql, g2) is a valid range in a, t is a value of X::value_type and k is a value of X: : key type.

Table 12: Associative container requirements (in addition to container)

expression return type assertion/note complexity
pre/post-condition

X::key type Key compile time
X::key compare Compare defaults to less<key type>. compile time
X::value compare a binary predicate type is the same as key compare for set compile time

and multiset; is an ordering relation
on pairs induced by the first
component (i.e. Key) for map and

multimap.
X (c) constructs an empty container; constant
X al(c); uses ¢ as a comparison object.
X () constructs an empty container; constant
X a; uses Compare () asa comparison

object.
X(i, 3, <) constructs an empty container and NlogN in
general

X a(i, 3, ¢);

from i to j);
is sorted
value comp ()

X(i, 3)
X a(i, 3):

inserts elements from the range
[i, 7J) intoit;uses c asa
comparison object.

same as above, but uses

Compare () as a comparison object.

(N is the distance
linearif [1, 7J)
with

same as above

a.key comp () X::key compare returns the comparison object out of constant
which a was constructed.

a.value comp () X::value compare returns an object of constant
value compare constructed out
of the comparison object.

a unig.insert(t) pair<iterator, inserts t if and only if there is no logarithmic
bool> element in the container with key
equal to the key of t. The bool
component of the returned pair
indicates whether the insertion takes
place and the iterator component
of the pair points to the element with

key equal to the key of t .
a_eqg.insert(t) iterator inserts t and returns the iterator logarithmic

pointing to the newly inserted

element.
a.insert (p, t) iterator inserts t if and only if there is no logarithmic in
general,

element with key equal to the key but amortized
constant

of t in containers with unique keys; if t is inserted
right

always inserts t in containers with before p.

equal keys.

always returns the iterator pointing

to the element with key equal to the

key of t.

iterator p is a hint pointing to where

the insert should start to search.
a.insert (i, 7J) result is not used inserts the elements from the range Nlog (size ()
+N)

[i, Jj) into the container. (N is the distance
from 1 to j)

in general; linear
iffi, 3)
is sorted
according to
value comp ()

a.erase (k) size type erases all the elements in the container log (size ())
+count (k) B

with key equal to k.

returns the number of erased elements.
a.erase (q) result is not used erases the element pointed to by g. amortized
constant
a.erase (gl, g2) result is not used erases all the elements in the range log(size())
+ N

[q1, g2). where N is the
distance

from ql to q2.

a.find (k)

a.count (k)
+count (k)
a.lower bound (k)

a.upper bound (k)

a.equal range (k)

iterator;
const iterator
for constant a

size type

iterator;
const iterator
for constant a

iterator;
const iterator
for constant a

pair<iterator,
iterator>;
pair<

const iterator,
const iterator>
for constant a

returns an iterator pointing to an
element with the key equal to k,
or a.end () if such an element
is not found.

returns the number of elements

with key equal to k.

returns an iterator pointing to the
first element with key not less
than k.

returns an iterator pointing to the
first element with key greater
than k.

equivalent to

make pair (
a.lower bound(k),
a.upper bound(k)) .

logarithmic

log(size())

logarithmic

logarithmic

logarithmic

The fundamental property of iterators of associative containers is that they iterate through the containers in the non-
descending order of keys where non-descending is defined by the comparison that was used to construct them. For
any two dereferenceable iterators i and j such that distance from i to j is positive,

value comp (*3j,

*1) == false

For associative containers with unique keys the stronger condition holds,

value comp (*i,

8.2.1 Set

8.2.2 Multiset

8.2.3 Map

8.2.4 Multimap

Source files: set.h
multiset.h
map.h

multimap.h

*3) == true.

8.2.1 Set

set is a kind of associative container that supports unique keys (contains at
most one of each key value) and provides for fast retrieval of the keys

themselves.

template<class Key, class Compare = less<Key>, template<class U> class

Allocator =
class set {

public:
// typedefs:

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

allocator>

Key key type;

Key value type;
Allocator<Key>::pointer pointer;
Allocator<Key>::reference reference;
Allocator<Key>::const reference const reference;
Compare key compare;

Compare value compare;

iterator;

iterator const iterator;

size type;

difference_ type;

reverse iterator;

const reverse iterator;

// allocation/deallocation:

set (const Compare& comp = Compare());

template<class Inputlterator>
set (InputIterator first, Inputlterator last,

const Compareé& comp = Compare()):
set (const set<Key, Compare, Allocator>& x);

~set ()

set<Key,

Compare, Allocator>& operator=(const set<Key, Compare,

Allocator>& x);
void swap (set<Key, Compare, Allocator>& x);

// accessors:

key compare key comp () const;
value compare value comp() const;

iterator begin() const;

iterator end() const;

reverse
reverse

iterator rbegin() const;
iterator rend() const;

bool empty() const;
size type size() const;

size type max size() const;

// insert/erase:

pair<iterator, bool> insert (const value typeé& X);

iterator insert (iterator position, const value typeé& x);
template<class Inputlterator>

void insert (InputlIterator first, Inputlterator last);
void erase (iterator position);

size type erase(const key typeé& Xx);

void erase(iterator first, iterator last);

// set operations:

iterator find(const key typeé& x) const;

size type count (const key typeé& x) const;

iterator lower bound(const key type& x) const;

iterator upper bound(const key type& x) const;

pair<iterator, iterator> equal range(const key type& x) const;

}s

template<class Key, class Compare, class Allocator>
bool operator==(const set<Key, Compare, Allocator>& x,
const set<Key, Compare, Allocator>& y);

template<class Key, class Compare, class Allocator>
bool operator<(const set<Key, Compare, Allocator>& x,
const set<Key, Compare, Allocator>& vy);

iterator is a constant bidirectional iterator referring to const value type. The exact type is
implementation dependent and determined by Allocator.

const iterator isthe same type as iterator.

size type is an unsigned integral type. The exact type is implementation dependent and determined by
Allocator.

difference type is a signed integral type. The exact type is implementation dependent and determined by
Allocator.

8.2.2 Multiset

multiset is a kind of associative container that supports equal keys (possibly contains multiple copies of the same
key value) and provides for fast retrieval of the keys themselves.
template<class Key, class Compare = less<Key>, template<class U> class

Allocator = allocator>
class multiset {

public:
// typedefs:

typedef Key key type;

typedef Key value type;

typedef Allocator<Key>::pointer pointer;
typedef Allocator<Key>::reference reference;
typedef Allocator<Key>::const reference const reference;
typedef Compare key compare;

typedef Compare value compare;

typedef iterator;

typedef iterator const iterator;

typedef size type;

typedef difference type;

typedef reverse iterator;

typedef const reverse iterator;

// allocation/deallocation:

multiset (const Compare& comp = Compare());

template<class InputlIterator>
multiset (InputlIterator first, Inputlterator last,

const Compare& comp = Compare());
multiset (const multiset<Key, Compare, Allocator>& x);
~multiset();

multiset<Key, Compare, Allocator>& operator=(const multiset<Key,
Compare, Allocator>& x);
void swap (multiset<Key, Compare, Allocator>& x);

// accessors:

key compare key comp() const;
value compare value comp() const;
iterator begin() const;

iterator end() const;

reverse iterator rbegin();
reverse iterator rend();

bool empty() const;

size type size() const;

size type max size() const;

// insert/erase:

iterator insert (const value typeé& Xx);
iterator insert (iterator position, const value typeé& x);
template<class Inputlterator>

void insert (InputlIterator first, Inputlterator last);
void erase (iterator position);

size type erase(const key typeé& Xx);

void erase(iterator first, iterator last);

// multiset operations:

iterator find(const key typeé& x) const;

size type count (const key typeé& x) const;

iterator lower bound(const key type& x) const;

iterator upper bound(const key type& x) const;

pair<iterator, iterator> equal range(const key type& x) const;

}s

template<class Key, class Compare, class Allocator>
bool operator==(const multiset<Key, Compare, Allocator>& x,
const multiset<Key, Compare, Allocator>& y);

template<class Key, class Compare, class Allocator>
bool operator<(const multiset<Key, Compare, Allocator>& x,
const multiset<Key, Compare, Allocator>& y);

iterator is a constant bidirectional iterator referring to const value type. The exact type is
implementation dependent and determined by Allocator.

const iterator isthe same typeas iterator.

size type is an unsigned integral type. The exact type is implementation dependent and determined by
Allocator.

difference type is a signed integral type. The exact type is implementation dependent and determined by
Allocator.

8.2.3 Map

map is a kind of associative container that supports unique keys (contains at most one of each key value) and
provides for fast retrieval of values of another type T based on the keys.

template<class Key, class T, class Compare = less<Key>, template<class
U> class Allocator = allocator>

class map {
public:

// typedefs:

typedef Key key type;
typedef pair<const Key, T> value type;
typedef Compare key compare;

class value compare
public binary function<value type, value type, bool> ({

friend class map;
protected:

Compare comp;

value compare (Compare c) : comp(c) {}
public:

bool operator() (const value type& x, const value typeé& y) {

return comp (x.first, y.first);

}i

typedef iterator;

typedef const iterator;

typedef Allocator<value type>::pointer pointer;

typedef Allocator<value type>::reference reference;

typedef Allocator<value type>::const reference const reference;
typedef size type;

typedef difference type;

typedef reverse iterator;

typedef const reverse iterator;

// allocation/deallocation:

map (const Compare& comp = Compare());

template<class Inputlterator>
map (InputIterator first, Inputlterator last,

const Compare& comp = Compare());

map (const map<Key, T, Compare, Allocator>& x);
~map () ;

map<Key, T, Compare, Allocator>&

operator=(const map<Key, T, Compare, Allocator>& x);
void swap (map<Key, T, Compare, Allocator>& x);

// accessors:

key compare key comp() const;
value compare value comp() const;
iterator begin();

const iterator begin() const;
iterator end();

const iterator end() const;
reverse iterator rbegin();

const reverse iterator rbegin();
reverse iterator rend();

const reverse iterator rend();
bool empty () const;

size type size() const;

size type max size() const;
Allocator<T>::reference operator|[] (const key type& Xx);

// insert/erase:

pair<iterator, bool> insert (const value typeé& X);
iterator insert (iterator position, const value typeé& x);

template<class Inputlterator>
void insert (InputlIterator first, Inputlterator last);

void erase (iterator position);
size type erase(const key typeé& x);
void erase(iterator first, iterator last);

// map operations:

iterator find(const key typeé& x);

const iterator find(const key type& x) const;

size type count (const key type& x) const;

iterator lower bound(const key type& x);

const iterator lower bound(const key type& x) const;

iterator upper bound(const key type& x);

const_ iterator upper bound(const key type& x) const;

pair<iterator, iterator> equal range(const key type& x);
pair<const iterator, const iterator> equal range (const key typeé& x)
const;

bi

template<class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& vy);

template<class Key, class T, class Compare, class Allocator>
bool operator<(const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& vy);

iterator is a bidirectional iterator referring to value type. The exact type is implementation dependent and
determined by Allocator.

const iterator is a constant bidirectional iterator referring to const value_type. The exact type is
implementation dependent and determined by Allocator. It is guaranteed that there is a constructor for
const iteratoroutofiterator.

size type is an unsigned integral type. The exact type is implementation dependent and determined by
Allocator.

difference type is asigned integral type. The exact type is implementation dependent and determined by
Allocator.

In addition to the standard set of member functions of associative containers, map provides Allocator<T>::reference
operator|](const key type&). For a map m and key k, m[k] is semantically equivalent to
(*((m.insert (make pair(k, T()))).first)) .second.

8.2.4 Multimap

multimap is a kind of associative container that supports equal keys (possibly contains multiple copies of the same
key value) and provides for fast retrieval of values of another type T based on the keys.

template<class Key, class T, class Compare = less<Key>, template<class
U> class Allocator = allocator>

class multimap {

public:

// typedefs:

typedef Key key type;
typedef pair<const Key, T> value type;
typedef Compare key compare;

class value compare
public binary function<value type, value type, bool> ({

friend class multimap;
protected:

Compare comp;

value compare (Compare c) : comp(c) {}
public:

bool operator() (const value type& x, const value typeé& y) {

return comp (x.first, y.first);

}i

typedef iterator;

typedef const iterator;

typedef Allocator<value type>::pointer pointer;

typedef Allocator<value type>::reference reference;

typedef Allocator<value type>::const reference const reference;
typedef size type;

typedef difference type;

typedef reverse iterator;

typedef const reverse iterator;

// allocation/deallocation:

multimap (const Compare& comp = Compare());
template<class Inputlterator>
multimap (InputIterator first, Inputlterator last,

const Compare& comp = Compare());
multimap (const multimap<Key, T, Compare, Allocator>& Xx);
~multimap () ;

multimap<Key, T, Compare, Allocator>é&
operator=(const multimap<Key, T, Compare, Allocator>& x);

void swap (multimap<Key, T, Compare, Allocator>& x);
// accessors:

key compare key comp() const;
value compare value comp() const;
iterator begin();

const iterator begin() const;
iterator end();

const iterator end() const;
reverse iterator rbegin();

const reverse iterator rbegin();
reverse iterator rend();

const reverse iterator rend();
bool empty () const;

size type size() const;

size type max size() const;

// insert/erase:

iterator insert (const value typeé& Xx);
iterator insert (iterator position, const value typeé& X);

template<class Inputlterator>
void insert (Inputlterator first, Inputlterator last);

void erase (iterator position);
size type erase(const key typeé& Xx);
void erase(iterator first, iterator last);

// multimap operations:

iterator find(const key typeé& Xx);

const iterator find(const key type& x) const;

size type count (const key typeé& x) const;

iterator lower bound(const key type& Xx);

const iterator lower bound(const key type& x) const;

iterator upper bound(const key type& Xx);

const iterator upper bound(const key type& x) const;

pair<iterator, iterator> equal range(const key type& x);
pair<const iterator, const iterator> equal range (const key typeé& x)
const;

}i

template<class Key, class T, class Compare, class Allocator>
bool operator==(const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& Vy):;

template<class Key, class T, class Compare, class Allocator>
bool operator<(const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& vy);

iterator is a bidirectional iterator referring to value type. The exact type is implementation dependent and
determined by Allocator.

const iterator is the a constant bidirectional iterator referring to const value type. The exact type is
implementation dependent and determined by Allocator. It is guaranteed that there is a constructor for
const iterator outofiterator.

size type is an unsigned integral type. The exact type is implementation dependent and determined by
Allocator.

difference type is a signed integral type. The exact type is implementation dependent and determined by
Allocator.

9 Stream iterators

To make it possible for algorithmic templates to work directly with input/output streams, appropriate iterator-like
template classes are provided. For example,

partial sum copy(istream iterator<double>(cin),
istream iterator<double> (),
ostream iterator<double>(cout, "\n"));

reads a file containing floating point numbers from cin, and prints the partial sums onto cout.
9.1 Istream iterator
9.2 Ostream iterator

Source files: iteratorh

9.1 Istream iterator

istream_iterator<T> reads (using operator>>) successive elements from the input stream for which it was
constructed. After it is constructed, and every time ++ is used, the iterator reads and stores a value of T. If the end of
stream is reached (operator void*() on the stream returns false), the iterator becomes equal to the end-of-stream
iterator value. The constructor with no arguments istream_iterator() always constructs an end of stream input iterator
object, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end of
stream is not defined. For any other iterator value a const T& is returned. It is impossible to store things into istream
iterators. The main peculiarity of the istream iterators is the fact that ++ operators are not equality preserving, that is,
i == does not guarantee at all that ++i == ++j. Every time ++ is used a new value is read.

The practical consequence of this fact is that istream iterators can be used only for one-pass algorithms, which
actually makes perfect sense, since for multi-pass algorithms it is always more appropriate to use in- memory data
structures. Two end-of-stream iterators are always equal. An end-of-stream iterator is not equal to a non-end-of-
stream iterator. Two non-end-of-stream iterators are equal when they are constructed from the same stream.

template<class T, class Distance = ptrdiff t>

class istream iterator : public input iterator<T, Distance> ({
friend bool operator==(const istream iterator<T, Distance>& x,
const istream iterator<T, Distance>& y);

public:

istream iterator();

istream iterator (istreamé& s);

istream iterator(const istream iterator<T, Distance>& Xx);
~istream iterator();

const T& operator* () const;

istream iterator<T, Distance>& operator++();

istream iterator<T, Distance> operator++ (int);

}i

template<class T, class Distance>
bool operator==(const istream iterator<T, Distance>& x,
const istream iterator<T, Distance>& y);

9.2 Ostream iterator

ostream iterator<T> writes (using operator<<) successive elements onto the output stream from
which it was constructed. If it was constructed with char* as a constructor argument, this string, called a delimiter
string, is written to the stream after every T is written. It is not possible to get a value out of the output iterator. Its
only use is as an output iterator in situations like

while (first != last) *result++ = *first++;
ostream iterator is defined as:

template<class T>
class ostream iterator : public output iterator {

public:

ostream iterator (ostreamé& s);

ostream iterator (ostream& s, const char* delimiter);
ostream iterator (const ostream iterator<T>& x);
~ostream iterator();

ostream iterator<T>& operator=(const T& value);
ostream iterator<T>& operator* ();

ostream iterator<T>& operator++ () ;

ostream iterator<T>& operator++ (int);

}i

10 Algorithms

All of the algorithms are separated from the particular implementations of data structures and are parameterized by
iterator types. Because of this, they can work with user defined data structures, as long as these data structures have
iterator types satisfying the assumptions on the algorithms.

Both in-place and copying versions are provided for certain algorithms. The decision whether to include a copying
version was usually based on complexity considerations. When the cost of doing the operation dominates the cost of
copy, the copying version is not included. For example, sort _copy is not included since the cost of sorting is much
more significant, and users might as well do copy followed by sort. When such a version is provided for algorithm it
is called algorithm _copy. Algorithms that take predicates end with the suffix _if (which follows the suffix

__copy).

The Predicate class is used whenever an algorithm expects a function object that when applied to the result of
dereferencing the corresponding iterator returns a value convertible to bool. In other words, if an algorithm takes
Predicate pred as its argument and first as its iterator argument, it should work correctly in the construct if
(pred(*first)){... }. The function object pred is assumed not to apply any non-constant function through the
dereferenced iterator.

The BinaryPredicate class is used whenever an algorithm expects a function object that when applied to the result of
dereferencing two corresponding iterators or to dereferencing an iterator and type T when T is part of the signature
returns a value convertible to bool. In other words, if an algorithm takes BinaryPredicate binary pred as its
argument and first] and first2 as its iterator arguments, it should work correctly in the construct if
(binary_pred(*first, *first2)){...}. BinaryPredicate always takes the first iterator type as its first argument, that is, in
those cases when T value is part of the signature, it should work correctly in the context of if (binary pred(*first,
value)){...}. It is expected that binary pred will not apply any non-constant function through the dereferenced
iterators.

In the description of the algorithms operators + and - are used for some of the iterator categories for which they do
not have to be defined. In these cases the semantics of a+n is the same as that of { X tmp = a; advance(tmp, n);
return tmp; } and that of a-b is the same as that of { Distance n; distance(a, b, n); return n; }.

10.1 Non-mutating sequence operations
10.2 Mutating sequence operations
10.3 Sorting and related operations
10.4 Generalized numeric operations

Source files: algobase.h
algo.h
iteratorh
tree.h
heap.h
stack.h
and all the container files

10.1 Non-mutating sequence operations

10.1.1 For each
10.1.2 Find

10.1.3 Adjacent find
10.1.4 Count

10.1.5 Mismatch

10.1.6 Equal
10.1.7 Search

10.1.1 For each

template<class Inputlterator, class Function>
Function for each (InputlIterator first, Inputlterator last, Function f);

for each applies f to the result of dereferencing every iterator in the range [first, last) andreturnsf. fis
assumed not to apply any non-constant function through the dereferenced iterator. fisapplied exactly last
- first times. If f returns a result, the result is ignored.

10.1.2 Find

template<class Inputlterator, class T>

InputIterator find(InputlIterator first, Inputlterator last, const T&
value) ;

template<class Inputlterator, class Predicate>

InputIterator find if (Inputlterator first, Inputlterator last, Predicate
pred) ;

find returns the first iteratoriintherange [first, last) for which the following corresponding
conditions hold: *i == value, pred(*i) == true.Ifno such iterator is found, last is returned. Exactly
find(first, last, value) - first applications of the corresponding predicate are done.

10.1.3 Adjacent find

template<class ForwardIterator>
ForwardIterator adjacent find(ForwardIterator first, ForwardIterator
last) ;

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent find(ForwardIterator first, ForwardIterator
last, BinaryPredicate binary pred);

adjacent find returns the first iterator i such that bothiandi+ 1 areintherange [first, last) for
which the following corresponding conditions hold: *i == * (i + 1), binary pred(*i, *(i + 1))
== true. Ifno such iterator i is found, last is returned. At most max ((last - first) - 1, 0)
applications of the corresponding predicate are done.

10.1.4 Count

template<class Inputlterator, class T, class Size>

void count (InputIterator first, Inputlterator last, const T& value, Sizes&
n);

template<class Inputlterator, class Predicate, class Size>

void count if (Inputlterator first, Inputlterator last, Predicate pred,
Size& n);

count adds to n the number of iterators i in the range [first, last) for which the following corresponding conditions
hold: *i == value, pred(*i) == true. Exactly last - first applications of the corresponding
predicate are done.

count must store the result into a reference argument instead of returning the result because the size type cannot be
deduced from built-in iterator types such as int*.

10.1.5 Mismatch

template<class InputlIteratorl, class Inputlterator2>
pair<InputIteratorl, InputlIterator2> mismatch (InputlIteratorl firstl,
InputIteratorl lastl, InputlIterator2 first2);

template<class InputlIteratorl, class Inputlterator2, class
BinaryPredicate>

pair<InputIteratorl, Inputlterator2> mismatch (InputlIteratorl firstl,
InputIteratorl lastl, InputlIterator2 first2,

BinaryPredicate binary pred);

mismatch returns a pair of iterators i and j such that j == first2 + (i - firstl) andiis the first
iterator in the range [firstl, lastl) for which the following corresponding conditions hold: ! (*1i ==
*(first2 + (i - firstl))), binary pred(*i, *(first2 + (i - firstl))) == false.

If such an iterator i is not found, a pair of lastl and first2 + (last] - firstl) is returned. At most last1 - firstl
applications of the corresponding predicate are done.

10.1.6 Equal

template<class InputlIteratorl, class Inputlterator2>

bool equal (InputlIteratorl firstl, InputlIteratorl lastl, InputlIterator?
first2);

template<class InputlIteratorl, class Inputlterator2, class
BinaryPredicate>

bool equal (Inputlteratorl firstl, InputlIteratorl lastl, InputlIterator?
first2, BinaryPredicate binary pred);

equal returns true if for every iterator i in the range [firstl, lastl) the following corresponding conditions hold: *i

== *(first2 + (i - firstl)), binary pred(*i, *(first2 + (i - first1))) == true. Otherwise, it returns false. At most last1 -
first] applications of the corresponding predicate are done.

10.1.7 Search

template<class ForwardIteratorl, class ForwardIterator2>
ForwardIteratorl search (ForwardIteratorl firstl, ForwardIteratorl lastl,
ForwardIterator?2 first2, ForwardIterator2 last2);

template<class ForwardIteratorl, class ForwardIterator2, class
BinaryPredicate>

ForwardIteratorl search (ForwardIteratorl firstl, ForwardIteratorl lastl,
ForwardIterator?2 first2, ForwardIterator2 last2, BinaryPredicate

binary pred);

search finds a subsequence of equal values in a sequence. search returns the first iterator i in the range [first1,
lastl - (last2 - first2)) such that for any non-negative integer n less than last2 - first2 the following corresponding
conditions hold: *(i + n) == *(first2 + n), binary_pred(*(i + n), *(first2 + n)) == true. If no such iterator is found,
lastl is returned. At most (lastl - firstl) * (last2 - first2) applications of the corresponding predicate are done. The
quadratic behavior, however, is highly unlikely.

10.2 Mutating sequence operations

10.2.1 Copy
10.2.2 Swap

10.2.3 Transform
10.2.4 Replace
10.2.5 Fill

10.2.6 Generate
10.2.7 Remove
10.2.8 Unique

.9 Reverse
0 Rotate

10.2
10.2.1
10.2.11 Random shuffle
10.2.12 Partitions

10.2.1 Copy

template<class InputlIterator, class Outputlterator>
OutputIterator copy(Inputlterator first, Inputlterator last,
Outputlterator result);

copy copies elements. For each non-negative integer n < (last - first), *(result + n) =
* (first + n) isperformed. copy returnsresult + (last - first). Exactly last - first
assignments are done. The result of copy is undefined if result isintherange [first, last).

template<class BidirectionalIteratorl, class Bidirectionallterator2>
Bidirectionallterator2 copy backward(Bidirectionallteratorl first,
BidirectionallIteratorl last, Bidirectionallterator?2 result);

copy_ backward copies elements in the range [first, last) intotherange [result - (last -
first), result) starting from last - I and proceeding to first. It should be used instead of copy when last is in
the range [result - (last - first), result). For each positive integer n <= (last - first), *(result - n) = *(last - n) is
performed. copy backward returns result - (last - first). Exactly last - first assignments are done. The result of
copy_backward is undefined if result is in the range [first, last).

10.2.2 Swap

template<class T>
void swap (T& a, T& b);

swap exchanges values stored in two locations.

template<class ForwardIteratorl, class ForwardIterator2>
void iter swap(ForwardIteratorl a, ForwardIterator2 b);

iter swap exchanges values pointed by the two iterators a and b.

template<class ForwardIteratorl, class ForwardIterator2>
ForwardIterator2 swap ranges (ForwardIteratorl firstl, ForwardIteratorl

lastl, ForwardIterator2 first2);

For each non-negative integer n < (lastl - firstl) the swap is performed: swap(*(firstl + n), *(first2 + n)).
swap_ranges returns first2 + (lastl - firstl). Exactly lastl - first] swaps are done. The result of swap ranges is
undefined if the two ranges [firstl, lastl) and [first2, first2 + (lastl - firstl)) overlap.

10.2.3 Transform

template<class InputlIterator, class Outputlterator, class UnaryOperation>
OutputIterator transform(InputlIterator first, Inputlterator last,
OutputIterator result, UnaryOperation op);

template<class InputlIteratorl, class Inputlterator2, class
OutputIterator, class BinaryOperation>

OutputIterator transform(Inputlteratorl firstl, InputlIteratorl lastl,
InputIterator2 first2, Outputlterator result, BinaryOperation binary op);

transform assigns through every iterator i in the range [result, result + (lastl - firstl)) a new corresponding value
equal to op(*(first] + (i - result)) or binary _op(*(firstl + (i - result), *(first2 + (i - result))). transform returns result +
(lastl - firstl). Exactly lastl - firstl applications of op or binary op are performed. op and binary op are expected
not to have any side effects. result may be equal to first in case of unary transform, or to firstl or first2 in case of
binary transform.

10.2.4 Replace

template<class ForwardIterator, class T>
void replace (ForwardIterator first, ForwardIterator last, const T&
old value, const T& new value);

template<class ForwardIterator, class Predicate, class T>
void replace if (ForwardIterator first, ForwardIterator last, Predicate
pred, const T& new value);

replace substitutes elements referred by the iterator i in the range [first, last) with new_value, when the following
corresponding conditions hold: *i == old_value, pred(*i) == true. Exactly last - first applications of the
corresponding predicate are done.

template<class InputlIterator, class OutputlIterator, class T>
OutputIterator replace copy(Inputlterator first, Inputlterator last,
OutputIterator result, const T& old value, const T& new value);

template<class Iterator, class Outputlterator, class Predicate, class T>
OutputIterator replace copy if(Iterator first, Iterator last,
OutputIterator result, Predicate pred, const T& new value);

replace copy assigns to every iterator i in the range [result, result + (last - first)) either new_value or *(first + (i
- result)) depending on whether the following corresponding conditions hold: *(first + (i - result)) == old_value,
pred(*(first + (i - result))) == true. replace_copy returns result + (last - first). Exactly last - first applications of the
corresponding predicate are done.

10.2.5 Fill

template<class ForwardIterator, class T>
void fill (ForwardIterator first, ForwardIterator last, const T& value);

template<class Outputlterator, class Size, class T>
OutputIterator fill n(OutputlIterator first, Size n, const T& value);

£111 assigns value through all the iterators in the range [first, last) or [first, first + n). fill nreturns first + n.
Exactly last - first (or n) assignments are done.

10.2.6 Generate

template<class ForwardIterator, class Generator>

void generate (ForwardIterator first, ForwardIterator last, Generator
gen) ;

template <class Outputlterator, class Size, class Generator>
OutputIterator generate n(Outputlterator first, Size n, Generator gen);

generate invokes the function object gen and assigns the return value of gen through all the iterators in the range
[first, last) or [first, first + n). gen takes no arguments. generate n returns first + n. Exactly last - first (orn)
invocations of gen and assignments are done.

10.2.7 Remove

template<class

ForwardIterator, class T>

ForwardIterator remove (ForwardIterator first, ForwardIterator last, const

T& value);

template<class

ForwardIterator, class Predicate>

ForwardIterator remove if (ForwardIterator first, ForwardIterator last,
Predicate pred);

remove eliminates all the elements referred to by iterator i in the range [first, last) for which the following
corresponding conditions hold: *i == value, pred(*i) == true. remove returns the end of the resulting range. remove
is stable, that is, the relative order of the elements that are not removed is the same as their relative order in the
original range. Exactly last - first applications of the corresponding predicate are done.

template<class
OutputlIterator
OutputlIterator

template<class
OutputlIterator
Outputlterator

InputIterator, class Outputlterator, class T>
remove copy (Inputlterator first, Inputlterator last,
result, const T& value);

InputIterator, class Outputlterator, class Predicate>
remove copy if (Inputlterator first, Inputlterator last,
result, Predicate pred);

remove_copy copies all the elements referred to by the iterator i in the range [first, last) for which the following
corresponding conditions do not hold: *i == value, pred(*i) == true. remove_copy returns the end of the resulting
range. remove_copy is stable, that is, the relative order of the elements in the resulting range is the same as their
relative order in the original range. Exactly last - first applications of the corresponding predicate are done.

10.2.8 Unique

template<class ForwardIterator>
ForwardIterator unique (ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique (ForwardIterator first, ForwardIterator last,
BinaryPredicate binary pred);

unique eliminates all but the first element from every consecutive group of equal elements referred to by the
iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i- 1) or

binary pred(*i, *(i - 1)) == true. unique returns the end of the resulting range. Exactly (last - first) - 1 applications of
the corresponding predicate are done.

template<class Inputlterator, class Outputlterator>
OutputIterator unique copy (Inputlterator first, Inputlterator last,
Outputlterator result);

template<class InputlIterator, class Outputlterator, class
BinaryPredicate>

OutputIterator unique copy (Inputlterator first, Inputlterator last,
OutputIterator result, BinaryPredicate binary pred);

unique copy copies only the first element from every consecutive group of equal elements referred to by the
iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i- 1) or

binary pred(*i, *(i - 1)) == true. unique_copy returns the end of the resulting range. Exactly last - first
applications of the corresponding predicate are done.

10.2.9 Reverse

template<class Bidirectionallterator>
void reverse (Bidirectionallterator first, BidirectionallIterator last);

For each non-negative integer i <= (last - first)/2, reverse applies swap to all pairs of iterators first + I, (last -
i) - 1.Exactly (last - first) /2 swaps are performed.

template<class Bidirectionallterator, class OutputIterator>
OutputIterator reverse copy(Bidirectionallterator first,
BidirectionalIterator last, Outputlterator result);

reverse_ copy copies the range [first, last) to the range [result, result + (last - first)) such that for any non-
negative integer i < (last - first) the following assignment takes place: *(result + (last - first) - i) = *(first + 1).
reverse_copy returns result + (last - first).Exactly last - first assignments are done. The result of reverse copy is
undefined if [first, last) and [result, result + (last - first)) overlap.

10.2.10 Rotate

template<class ForwardIterator>
void rotate (ForwardIterator first, ForwardIterator middle,
ForwardIterator last);

For each non-negative integer i < (last - first), rotate places the element from the position first + i into position first +
(1 + (last - middle)) % (last - first). [first, middle) and [middle, last) are valid ranges. At most 1last - first
swaps are done.

template<class ForwardIterator, class OutputIterator>OutputlIterator
rotate copy(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, Outputlterator result);

rotate_ copy copies the range [first, last) to the range [result, result + (last - first)) such that for each non-
negative integer i < (last - first) the following assignment takes place: *(result + (i + (last - middle)) % (last - first))
= *(first + i). rotate_copy returns result + (last - first). Exactly last - first assignments are done. The result of
rotate_copy is undefined if [first, last) and [result, result + (last - first)) overlap.

10.2.11 Random shuffle

template<class RandomAccessIterator>
void random shuffle (RandomAccessIterator first, RandomAccessIterator

last) ;

template<class RandomAccesslterator, class RandomNumberGenerator>
void random shuffle (RandomAccessIterator first, RandomAccessIterator
last, RandomNumberGeneratoré& rand);

random_shuffle shuffles the elements in the range [first, last) with uniform distribution. Exactly (last - first) - 1
swaps are done. random_shuffle can take a particular random number generating function object rand such that rand
takes a positive argument n of distance type of the RandomAccesslterator and returns a randomly chosen value

between 0 and n—-1.

10.2.12 Partitions

template<class Bidirectionallterator, class Predicate>
BidirectionalIterator partition(BidirectionalIterator first,
BidirectionalIterator last, Predicate pred);

partition places all the elements in the range [first, last) that satisfy pred before all the elements that do not
satisfy it. It returns an iterator i such that for any iterator j in the range [first, 1), pred(*j) == true, and for any iterator
k in the range [i, last), pred(*j) == false. It does at most (last - first)/ 2 swaps. Exactly last - first applications
of the predicate is done.

template<class BidirectionalIterator, class Predicate>
BidirectionalIlterator stable partition(BidirectionalIterator first,
Bidirectional Iterator last, Predicate pred);

stable partition places all the elements in the range [first, last) that satisfy pred before all the elements that
do not satisfy it. It returns an iterator i such that for any iterator j in the range [first, i), pred(*j) == true, and for any
iterator k in the range [i, last), pred(¥j) == false. The relative order of the elements in both groups is preserved. It
does at most (last - first) * log(last - first) swaps, but only linear number of swaps if there is enough extra memory.
Exactly last - first applications of the predicate are done.

10.3 Sorting and related operations

All the operations in this section have two versions: one that takes a function object of type Compare and one that
uses an operator<.

Compare is a function object which returns a value convertible to bool. Compare comp is used throughout
for algorithms assuming an ordering relation. comp satisfies the standard axioms for total ordering and it does not
apply any non-constant function through the dereferenced iterator. For all algorithms that take Compare, there is
a version that uses operator<instead. Thatis, comp (*i, *3j) == truedefaultsto *i < *j == true.

A sequence is sorted with respect to a comparator comp if for any iterator i pointing to an element in a sequence and

any non-negative integer n such that i + n is a valid iterator pointing to an element of the same sequence,
comp (*(1i + n), *i) == false.

In the descriptions of the functions that deal with ordering relationships we frequently use a notion of equality to
describe concepts such as stability. The equality to which we refer is not necessarily an operator==, but an equality
relation induced by the total ordering. That is, two element a and b are considered equal if and only if ! (a < Db)
&& (b < a).

10.3.1 Sort

10.3.2 Nth element

10.3.3 Binary search

10.3.4 Merge

5 Set operations on sorted structures
6 Heap operations

7 Minimum and maximum

8 Lexicographical comparison

9 Permutation generators

10.3.
10.3.
10.3.
10.3.
10.3.

10.3.1 Sort

template<class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccesslterator last);

template<class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare
comp) ;

sort sorts the elements in the range [first, last).Itdoes approximately N1ogN (where N equals to
last - first) comparisons on the average. If the worst case behavior is important stable sort or
partial sort should be used.

template<class RandomAccesslterator>
void stable sort (RandomAccessIterator first, RandomAccesslterator last);

template<class RandomAccessIterator, class Compare>
void stable sort (RandomAccessIterator first, RandomAccesslterator last,
Compare comp) ;

stable sort sorts the elements in the range [first, last).Itis stable, that is, the relative order of the
equal elements is preserved. It does at most N (logN) 2 (where Nequalsto last - first) comparisons;
if enough extra memory is available, it is N1ogN.

template<class RandomAccessIterator>
void partial sort (RandomAccessIterator first, RandomAccessIterator
middle, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial sort (RandomAccessIterator first, RandomAccessIterator
middle, RandomAccesslIterator last, Compare comp);

partial sort places the first middle - first sorted elements from therange [first, last) into the
range [first, middle). The rest of the elements in the range [middle, last) are placed in an undefined
order. It takes approximately (last - first) * log(middle - first) comparisons.

template<class InputlIterator, class RandomAccessIterator>
RandomAccessIterator partial sort copy(Inputlterator first, Inputlterator
last, RandomAccessIterator result first, RandomAccessIterator

result last);

template<class Inputlterator, class RandomAccessIterator, class Compare>
RandomAccessIterator partial sort copy(Inputlterator first, Inputlterator
last, RandomAccessIterator result first, RandomAccessIterator

result last, Compare comp);

partial sort copy places the first min (last - first, result last - result first) sorted
elements into the range [result first, result first + min(last - first, result last -
result first)) . Itreturnseither result last or result first + (last - first) whichever
is smaller. It takes approximately (last - first) * log(min(last - first, result last -
result first)) comparisons.

10.3.2 Nth element

template<class RandomAccessIterator>
void nth element (RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

template<class RandomAccesslterator, class Compare>
void nth element (RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp) ;

After nth element the element in the position pointed to by nth is the element that would be in that position if
the whole range were sorted. Also for any iterator i in the range [first, nth) and any iterator j in the range [nth, last) it
holds that !(*i > *j) or comp(*1, *j) == false. It is linear on the average.

10.3.3 Binary search

All of the algorithms in this section are versions of binary search. They work on non-random access iterators
minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are especially
appropriate for random access iterators, since these algorithms do a logarithmic number of steps through the data
structure. For non-random access iterators they execute a linear number of steps.

template<class ForwardIterator, class T>
ForwardIterator lower bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator lower bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

lower bound finds the first position into which value can be inserted without violating the ordering.

lower bound returns the furthermost iterator i in the range [first, last)such thatforany iterator 7 in
therange [first, i) the following corresponding conditions hold: *j < value or comp(*j, value)
== true.Atmost log(last - first) + 1 comparisons are done.

template<class ForwardIterator, class T>
ForwardIterator upper bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator upper bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp) ;

upper bound finds the furthermost position into which value can be inserted without violating the ordering.
upper bound returns the furthermost iterator 1iintherange [first, last) such that for any
iterator j intherange [first, i) the following corresponding conditions hold: ! (value < *j) or
comp (value, *j) == false.Atmost log(last - first) + 1 comparisons are done.

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator> equal range (ForwardIterator first,
ForwardIterator last, const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator> equal range (ForwardIterator first,
ForwardIterator last, const T& value, Compare comp);

equal range finds the largest subrange [i, J) such that the value can be inserted at any iterator kinit.

k satisfies the corresponding conditions: ! (*k < value) && ! (value < *k) or comp(*k, value)
== false && comp(value, *k) == false.Atmost2 * log(last - first) + 1 comparisons
are done.

template<class ForwardIterator, class T>
bool binary search (ForwardIterator first, ForwardIterator last, const T&
value) ;

template<class ForwardIterator, class T, class Compare>
bool binary search(ForwardIterator first, ForwardIterator last, const T&
value, Compare comp) ;

binary searchreturns true ifthereisan iterator iintherange [first last) that satisfies the
corresponding conditions: ! (*i < value) && ! (value < *i) or comp(*i, value) == false
&& comp (value, *i) == false.Atmost log(last - first)+ 2 comparisons are done.

10.3.4 Merge

template<class InputIteratorl, class Inputlterator?2, class
OutputIterator>

OutputIterator merge (Inputlteratorl firstl, InputlIteratorl lastl,
InputIterator2 first2, Inputlterator2 last2, Outputlterator result);

template<class InputlIteratorl, class InputlIterator2, class
OutputIterator, class Compare>

OutputIterator merge (InputlIteratorl firstl, InputlIteratorl lastl,
InputIterator2 first2, Inputlterator2 last2, Outputlterator result,
Compare comp) ;

merge merges two sorted ranges [firstl, lastl) and [first2, last2) intotherange [result,
result + (lastl - firstl) + (last2 - first2)) . The merge is stable, that is, for equal elements
in the two ranges, the elements from the first range always precede the elements from the second. merge returns
result + (lastl - firstl) + (last2 - first2).Atmost (lastl - firstl) + (last2
- first2) - 1 comparisons are performed. The result of merge is undefined if the resulting range overlaps
with either of the original ranges.

template<class Bidirectionallterator>
void inplace merge (Bidirectionallterator first, Bidirectionallterator
middle, Bidirectionallterator last);

template<class BidirectionallIterator, class Compare>
void inplace merge (Bidirectionallterator first, Bidirectionallterator
middle, Bidirectionallterator last, Compare comp);

inplace merge merges two sorted consecutive ranges [first, middle) and [middle, last)
putting the result of the merge into the range [first, last) . The merge is stable, that is, for equal elements in
the two ranges, the elements from the first range always precede the elements from the second. When enough
additional memory is available, at most (last - first) - 1 comparisons are performed. If no additional
memory is available, an algorithm with O (N1ogN) complexity may be used.

10.3.5 Set operations on sorted structures

This section defines all the basic set operations on sorted structures. They even work with multisets containing
multiple copies of equal elements. The semantics of the set operations is generalized to multisets in a standard way
by defining union to contain the maximum number of occurrences of every element, intersection to contain the
minimum, and so on.

template<class InputlIteratorl, class Inputlterator2>
bool includes (InputlIteratorl firstl, InputlIteratorl lastl, InputlIterator2
first2, Inputlterator2 last2);

template<class InputlIteratorl, class InputlIterator2, class Compare>
bool includes (InputlIteratorl firstl, InputlIteratorl lastl, Inputlterator2
first2, Inputlterator?2 last2, Compare comp);

includes returns true if every element in the range [first2, last2)iscontained inthe range [firstl,
lastl) . Itreturns false otherwise. At most ((lastl - firstl) + (last2 - first2)) * 2 -1
comparisons are performed.

template<class InputlIteratorl, class InputlIterator2, class
OutputIterator>

OutputIterator set union(InputlIteratorl firstl, InputlIteratorl lastl,
InputIterator2 first2, Inputlterator2 last2, Outputlterator result);

template<class Inputlteratorl, class Inputlterator2, class
OutputIterator, class Compare>

OutputIterator set union (Inputlteratorl firstl, InputlIteratorl lastl,
InputIterator2 first2, Inputlterator2 last2, Outputlterator result,
Compare comp) ;

set union constructs a sorted union of the elements from the two ranges. It returns the end of the constructed
range. set union is stable, that is, if an element is present in both ranges, the one from the first range is copied.
Atmost ((lastl - firstl) + (last2 - first2)) * 2 - 1 comparisons are performed. The result
of set_union is undefined if the resulting range overlaps with either of the original ranges.

template<class InputlIteratorl, class Inputlterator2, class
OutputlIterator>

OutputIterator set intersection (Inputlteratorl firstl, InputlIteratorl
lastl, InputlIterator2 first2, Inputlterator2 last2, Outputlterator
result) ;

template<class Inputlteratorl, class Inputlterator2, class
OutputIterator, class Compare>

OutputIterator set intersection (Inputlteratorl firstl, Inputlteratorl
lastl, InputlIterator2 first2, Inputlterator?2 last2, Outputlterator
result, Compare comp);

set intersection constructs a sorted intersection of the elements from the two ranges. It returns the end of the
constructed range. set intersection is guaranteed to be stable, that is, if an element is present in both ranges, the
one from the first range is copied. At most ((lastl - firstl) + (last2 - first2)) * 2 - 1
comparisons are performed. The result of set intersection is undefined if the resulting range overlaps with
either of the original ranges.

template<class InputlIteratorl, class InputlIterator2, class
OutputIterator>

OutputIterator set difference(InputlIteratorl firstl, InputIteratorl
lastl, Inputlterator2 first2, Inputlterator2 last2, Outputlterator
result) ;

template<class InputlIteratorl, class Inputlterator2, class

OutputIterator, class Compare>

OutputIterator set difference(InputlIteratorl firstl, InputIteratorl
lastl, InputlIterator2 first2, Inputlterator?2 last2?2, Outputlterator
result, Compare comp):;

set _difference constructs a sorted difference of the elements from the two ranges. It returns the end of the
constructed range. At most ((lastl - firstl) + (last2 - first2)) * 2 - 1 comparisons are
performed. The result of set difference is undefined if the resulting range overlaps with either of the original
ranges.

template<class InputlIteratorl, class Inputlterator2, class
OutputIterator>

OutputIterator set symmetric difference (InputlIteratorl firstl,
InputIteratorl lastl, Inputlterator2 first2, Inputlterator2 last2,
OutputIterator result);

template<class InputlIteratorl, class Inputlterator2, class
OutputIterator, class Compare>

OutputIterator set symmetric difference (Inputlteratorl firstl,
InputIteratorl lastl, Inputlterator2 first2, Inputlterator2 last2,
Outputlterator result, Compare comp) ;

set symmetric_ difference constructs a sorted symmetric difference of the elements from the two ranges. It
returns the end of the constructed range. At most ((lastl - firstl) + (last2 - first2)) * 2 -
1 comparisons are performed. The result of set symmetric difference is undefined if the resulting range
overlaps with either of the original ranges.

10.3.6 Heap operations

A heap is a particular organization of elements in a range between two random access iterators [a, b). Its two key
properties are: (1) *a is the largest element in the range and (2) *a may be removed by pop_heap, or a new element
added by push_heap, in O(logN) time. These properties make heaps useful as priority queues. make heap
converts a range into a heap and sort heap turns a heap into a sorted sequence.

template<class RandomAccessIterator>
void push heap (RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void push heap (RandomAccessIterator first, RandomAccessIterator last,
Compare comp) ;

push heap assumes therange [first, last - 1) isa valid heap and properly places the value in the
location last - 1 into the resulting heap [first, last).Atmost log(last - first) comparisons
are performed.

template<class RandomAccessIterator>
void pop heap (RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop heap (RandomAccessIterator first, RandomAccessIterator last,
Compare comp) ;

pop heap assumes the range [first, last) isa valid heap, then swaps the value in the location first with
the value in the location last - 1 and makes [first, last - 1) intoaheap. Atmost 2 * log(last
- first) comparisons are performed.

template<class RandomAccessIterator>
void make heap (RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make heap (RandomAccessIterator first, RandomAccessIterator last,
Compare comp) ;

make heap constructs a heap out of the range [first, last).Atmost 3* (last - first) comparisons
are performed.

template<class RandomAccessIterator>
void sort heap (RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp) ;

sort heap sorts elements in the heap [first, last). Atmost NlogN comparisons are performed where
Nisequalto last - first. sort heap isnot stable.

10.3.7 Minimum and maximum

template<class T>
const T& min(const T& a, const T& b);

template<class T, class Compare>
const T& min(const T& a, const T& b, Compare comp);

template<class T>
const T& max (const T& a, const T& b);

template<class T, class Compare>
const T& max(const T& a, const T& b, Compare comp);

min returns the smaller and max the larger. min and max return the first argument when their arguments are
equal.

template<class ForwardIterator>
ForwardIterator max element (ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator max element (ForwardIterator first, ForwardIterator last,
Compare comp) ;

max element returns the first iterator iintherange [first, last)suchthatforany iterator j

intherange [first, last) the following corresponding conditions hold: ! (*1i < *j) or comp (*1,
*j) == false. Exactly max((last - first) - 1, 0) applications of the corresponding comparisons
are done

template<class ForwardIterator>
ForwardIterator min_ element (ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator min element (ForwardIterator first, ForwardIterator last,
Compare comp) ;

min element returns the first iterator iintherange [first, last)suchthatforany iterator j
intherange [first, last) the following corresponding conditions hold: ! (*j < *i) or comp (*7,

*i) == false. Exactlymax((last - first) - 1, 0) applications of the corresponding comparisons
are done.

10.3.8 Lexicographical comparison

template<class InputlIteratorl, class Inputlterator2>
bool lexicographical compare (InputlIteratorl firstl, InputIteratorl lastl,
InputIterator2 first2, Inputlterator2 last2);

template<class InputlIteratorl, class Inputlterator2, class Compare>
bool lexicographical compare (InputlIteratorl firstl, InputlIteratorl lastl,
InputIterator?2 first2, Inputlterator2 last2, Compare comp);

lexicographical compare returns true if the sequence of elements defined by the range [firstl,
last1) is lexicographically less than the sequence of elements defined by the range [first2, last2). It
returns false otherwise. At most 2 * min ((lastl - firstl), (last2 - first2)) applications of the
corresponding comparison are done.

10.3.9 Permutation generators

template<class Bidirectionallterator>
bool next permutation (BidirectionalIterator first, Bidirectionallterator
last);

template<class Bidirectionallterator, class Compare>
bool next permutation (Bidirectionallterator first, Bidirectionallterator
last, Compare comp);

next permutation takes a sequence defined by the range [first, last) and transforms it into the next
permutation. The next permutation is found by assuming that the set of all permutations is lexicographically sorted
with respect to operator< or comp. Ifsuch apermutation exists, it returns true. Otherwise, it transforms the
sequence into the smallest permutation, that is, the ascendingly sorted one, and returns false. At most (last -
first)/2 swaps are performed.

template<class Bidirectionallterator>
bool prev permutation (BidirectionalIterator first, Bidirectionallterator
last);

template<class Bidirectionallterator, class Compare>
bool prev permutation (BidirectionallIterator first, Bidirectionallterator
last, Compare comp) ;

prev_permutation takes a sequence defined by the range [first, last) and transforms it into the
previous permutation. The previous permutation is found by assuming that the set of all permutations is
lexicographically sorted with respect to operator< or comp. If such a permutation exists, it returns true.
Otherwise, it transforms the sequence into the largest permutation, that is, the descendingly sorted one, and returns
false. At most (last - first)/2 swaps are performed.

10.4 Generalized numeric operations
10.4.1 Accumulate

10.4.2 Inner product

10.4.3 Partial sum

10.4.4 Adjacent difference

10.4.1 Accumulate

template<class Inputlterator, class T>
T accumulate (InputIterator first, Inputlterator last, T init);

template<class Inputlterator, class T, class BinaryOperation>
T accumulate (InputIterator first, Inputlterator last, T init,
BinaryOperation binary op);

accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the
difficulty of defining the result of reduction on an empty sequence by always requiring an initial value.
Accumulation is done by initializing the accumulator acc with the initial value init and then modifying it
with acc = acc + *1 or acc = binary op(acc, *i) forevery iterator i intherange
[first, last) inorder. binary op is assumed not to cause side effects.

10.4.2 Inner product

template<class Inputlteratorl, class Inputlterator2, class T>
T inner product (InputIteratorl firstl, InputIteratorl lastl,
InputIterator2 first2, T init);

template<class InputlIteratorl, class Inputlterator?2, class T, class
BinaryOperationl, class BinaryOperation2>

T inner product (InputIteratorl firstl, InputIteratorl lastl,
InputIterator2 first2, T init, BinaryOperationl binary opl,
BinaryOperation2 binary op2);

inner product computes its result by initializing the accumulator acc with the initial value init and
then modifying it with acc = acc + (*il) * (*1i2) or acc = binary opl (acc,

binary op2(*il, *i2)) forevery iterator ilintherange [first, last) and iterator i2
intherange [first2, first2 + (last - first)) inorder. binary opl andbinary op2 are
assumed not to cause side effects.

10.4.3 Partial sum

template<class InputlIterator, class Outputlterator>
OutputIterator partial sum(Inputlterator first, InputIterator last,
Outputlterator result);

template<class InputlIterator, class Outputlterator, class
BinaryOperation>

OutputIterator partial sum(Inputlterator first, InputIterator last,
OutputIterator result, BinaryOperation binary op);

partial sumassignstoevery iterator 1iintherange [result, result + (last - first)) a
value correspondingly equalto ((... (*first + *(first + 1)) +...)+ *(first + (i -
result))) or binary op(binary op (..., binary op(*first, *(first + 1)), ...),
*(first + (i - result))). partial sum returns result + (last - first). Exactly
(last - first) - 1 applicationsof binary op areperformed. binary op is expected not to have
any side effects. result may be equalto first.

10.4.4 Adjacent difference

template<class InputlIterator, class Outputlterator>

OutputIterator adjacent difference(Inputlterator first, Inputlterator

last, Outputlterator result);

template<class InputlIterator, class Outputlterator, class
BinaryOperation>

OutputIterator adjacent difference(Inputlterator first, Inputlterator

last, OutputlIterator result, BinaryOperation binary op);

adjacent difference assigns to every element referred to by iterator 1iintherange [result + 1,
result + (last - first)) avalue correspondingly equalto * (first + (i - result)) -

(first + (1 - result) - 1) or binary op((first + (i - result)), *(first + (i
- result) - 1)). result getsthevalueof *first. adjacent difference returns result +
(last - first). Exactly (last - first) - 1 applications of binary op are performed.

binary op isexpected not to have any side effects. result may be equal to first.

11 Adaptors

Adaptors are template classes that provide interface mappings. For example, insert iterator provides a
container with an output iterator interface.

11.1 Container adaptors

11.2 Iterator adaptors

11.3 Function adaptors

11.1 Container adaptors

It is often useful to provide restricted interfaces to containers. The library provides stack, queue and
priority queue through the adaptors that can work with different sequence types.

11.1.1 Stack
11.1.2 Queue
11.1.3 Priority queue

Source files: stack.h

11.1.1 Stack

Any sequence supporting operations back, push_back and pop_back can be used to instantiate stack. In particular,
vector, 1ist and deque can be used

template<class Container>
class stack {

friend bool operator==(const stack<Container>& x, const stack<Container>&
y)i

friend bool operator<(const stack<Container>& x, const stack<Container>&
y) i

public:

typedef Container::value type value type;
typedef Container::size type size type;

protected:

Container c;

public:
bool empty () const { return c.empty(); }
size type size() const { return c.size(); }
value type& top() { return c.back(); }

const value typeé& top() const { return c.back(); }
void push(const value typeé& x) { c.push back(x); }
void pop() { c.pop back(); }

}i

template<class Container>
bool operator==(const stack<Container>& x, const stack<Container>& y) {

return x.c == y.cC;
}

template<class Container>
bool operator<(const stack<Container>& x, const stack<Container>& y) {

return x.c < y.c;
}
For example, stack<vector<int> > is an integer stack made out of vector, and stack<deque<char> > is a character
stack made out of deque.

11.1.2 Queue

Any sequence supporting operations front, back, push_back and pop_front can be used to instantiate queue. In
particular, 1ist and deque can be used

template<class Container>
class queue {

friend bool operator==(const queue<Container>& x, const queue<Container>&
y) i

friend bool operator<(const queue<Container>& x, const gqueue<Container>&
y):

public:

typedef Container::value type value type;
typedef Container::size type size type;

protected:

Container c;

public:
bool empty() const { return c.empty(); }
size type size() const { return c.size(); }
value type& front() { return c.front(); }
const value type& front() const { return c.front(); }
value type& back() { return c.back(); }
const value typeé& back() const { return c.back(); }
void push(const value typeé& x) { c.push back(x); }
void pop() { c.pop front(); }

bi

template<class Container>

bool operator==(const gqueue<Container>& x, const queue<Container>& y) {
return x.c == y.cC;

}

template<class Container>
bool operator<(const queue<Container>& x, const queue<Container>& y) {

return x.c < y.c;

11.1.3 Priority queue

Any sequence with random access iterator and supporting operations front, push_back and pop_back can be used to
instantiate priority queue. In particular, vector and deque can be used.

template<class Container, class Compare = less<Container::value type> >
class priority queue {

public:

typedef Container::value type value type;
typedef Container::size type size type;

protected:

Container c;
Compare comp;

public:

}i

priority queue (const Compare& x = Compare()) : c(), comp(x) {}

template<class InputlIterator>
priority queue (InputlIterator first, InputlIterator last, const

Compare& x = Compare()) : c(first, last), comp(x) {
make heap(c.begin(), c.end(), comp):;

}

bool empty() const { return c.empty(); }

size type size() const { return c.size(); }

const value typeé& top() const { return c.front(); }

void push(const value typeé& x) {
c.push back(x);
push heap(c.begin(), c.end(), comp);
}
void pop () A
pop _heap(c.begin(), c.end(), comp);
c.pop_back() ;

// no equality is provided

11.2 Iterator adaptors

11.2.1 Reverse iterators
11.2.2 Insert iterators

Source files: iteratorh

11.2.1 Reverse iterators

Bidirectional and random access iterators have corresponding reverse iterator adaptors that iterate through the data
structure in the opposite direction. They have the same signatures as the corresponding iterators. The fundamental
relation between a reverse iterator and its corresponding iterator i is established by the identity

&* (reverse iterator(i)) == &*(1i - 1).

This mapping is dictated by the fact that while there is always a pointer past the end of an array, there might not be a
valid pointer before the beginning of an array.

template<class Bidirectionallterator, class T, class Reference = T&,
class Distance = ptrdiff t>
class reverse bidirectional iterator

public bidirectional iterator<T, Distance> ({

typedef reverse bidirectional iterator<BidirectionallIterator, T,
Reference, Distance> self;

friend bool operator==(const self& x, const selfg vy);
protected:

Bidirectionallterator current;

public:
reverse bidirectional iterator() {}
reverse bidirectional iterator (BidirectionallIterator x) : current (x)
{}
BidirectionalIterator base() { return current; }
Reference operator* () const ({
BidirectionalIterator tmp = current;
return *--tmp;
}
selfs& operator++ () {

-—-current;
return * this;

self operator++ (int) ({
self tmp = * this;
--current;
return tmp;

}

selfs& operator—--() {
++current;
return * this;

}

self operator--(int) {
self tmp = * this;
++current;
return tmp;

}r

template<class Bidirectionallterator, class T, class Reference, class
Distance>

inline bool operator==(const

reverse bidirectional iterator<BidirectionalIterator, T, Reference,
Distance>& x, const reverse bidirectional iterator<Bidirectionallterator,

T, Reference, Distance>& y) {
return x.current == y.current;

}

template<class RandomAccessIterator, class T, class Reference =

Distance = ptrdiff t>

T&,

class

class reverse iterator : public random access iterator<T, Distance> {

typedef reverse iterator<RandomAccessIterator, T, Reference,

Distance> self;

friend bool operator==(const self& x, const self& y);
friend bool operator<(const self& x, const self& y);
friend Distance operator- (const self& x, const self& y);
friend self operator+ (Distance n, const self& x);

protected:

RandomAccessIterator current;

public:
reverse iterator() {}
reverse iterator (RandomAccessIterator x) : current(x) ({}
RandomAccessIterator base() { return current; }
Reference operator* () const ({
RandomAccessIterator tmp = current;
return *--tmp;
}
self& operator++ () {

—-—-current;
return * this;

self operator++ (int) ({
self tmp = * this;
—-—-current;
return tmp;

}

self& operator--() {
++current;
return * this;

}

self operator--(int) {
self tmp = * this;
++current;
return tmp;

}

self operator+ (Distance n)

const {
return self (current - n);

}

self& operator+=(Distance n) {

current -= n;
return * this;

}

self operator-(Distance n) const {
return self (current + n);

}

self& operator-=(Distance n) {
current += n;
return * this;

}

Reference operator([] (Distance n) { return *(* this + n); }

}i

template<class RandomAccesslterator, class T, class Reference, class
Distance>

inline bool operator==(const reverse iterator<RandomAccessIterator, T,
Reference, Distance>& x, const reverse iterator<RandomAccessIterator, T,
Reference, Distance>& y) {

return x.current == y.current;
}

template<class RandomAccessIterator, class T, class Reference, class
Distance>
inline bool operator<(const reverse iterator<RandomAccessIlterator, T,
Reference, Distance>& x, const reverse_iterator<RandomAccessIterator, T,
Reference, Distance>& y) {

return y.current < x.current;

}

template<class RandomAccesslterator, class T, class Reference, class

Distance>
inline Distance operator-(const reverse iterator<RandomAccessIterator, T,

Reference, Distance>& x, const reverse iterator<RandomAccessIterator, T,
Reference, Distance>& y) {
return y.current - x.current;

}

template<class RandomAccessIterator, class T, class Reference, class
Distance>
inline reverse iterator<RandomAccessIterator, T, Reference, Distance>
operator+ (Distance n, const reverse_iterator<RandomAccessIterator, T,
Reference, Distance>& x) {
return reverse_iterator<RandomAccessIterator, T, Reference,
Distance> (x.current - n);

11.2.2 Insert iterators

To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator adaptors,
called insert iterators, are provided in the library. With regular iterator classes,

while (first != last) *result++ = *first++;

causes arange [first, last) tobe copied into a range starting with result. The same code with result being
an insert iterator will insert corresponding elements into the container. This device allows all of the copying
algorithms in the library to work in the insert mode instead of the regular overwrite mode.

An insert iterator is constructed from a container and possibly one of its iterators pointing to where insertion takes
place if it is neither at the beginning nor at the end of the container. Insert iterators satisfy the requirements of output
iterators. operator® returns the insert iterator itself. The assignment operator=(const T& x) is defined on insert
iterators to allow writing into them, it inserts x right before where the insert iterator is pointing. In other words, an
insert iterator is like a cursor pointing into the container where the insertion takes place. back insert_iterator inserts
elements at the end of a container, front insert iterator inserts elements at the beginning of a container, and
insert_iterator inserts elements where the iterator points to in a container. back inserter, front_inserter, and
inserter are three functions making the insert iterators out of a container.

template<class Container>
class back insert iterator : public output iterator ({

protected:
Containeré& container;
public:

back insert iterator(Container& x) : container(x) {}

back insert iterator<Container>g&
operator=(const Container::value typeé& value) {

container.push back (value);

return * this;
}
back insert iterator<Container>& operator* () { return * this; }
back insert iterator<Container>& operator++() { return * this; }
back insert iterator<Container>& operator++(int) { return * this; }

}i

template<class Container>
back insert iterator<Container> back inserter (Containeré& x) {

return back insert iterator<Container>(x);
}

template<class Container>
class front insert iterator : public output iterator ({

protected:
Containeré& container;
public:

front insert iterator (Container& x) : container(x) {}

front insert iterator<Container>é&
operator=(const Container::value typeé& value) ({

container.push front(value);
return * this;

{ return * this; }
{ return * this; }
{ return * this;

front insert iterator<Container>& operator* ()
front insert iterator<Container>& operator++ ()
front insert iterator<Container>& operator++ (int)

}i
template<class Container>
front insert iterator<Container> front inserter(Containeré& x) {

return front insert iterator<Container>(x);

}

template<class Container>
class insert iterator : public output iterator ({

protected:

Container& container;
Container::iterator iter;

public:
insert iterator (Container& x, Container::iterator I)
container(x), iter (i) {}

insert iterator<Container>&
operator=(const Container::value typeé& value) {

iter = container.insert (iter, wvalue);
++iter;
return * this;
}
insert iterator<Container>& operator* ()
insert iterator<Container>& operator++ ()
insert iterator<Container>& operator++ (int)

{ return * this; }
{ return * this; }
{ return * this; }

i

template<class Container, class Iterator>

insert iterator<Container> inserter (Containeré& x, Iterator i) {
return insert iterator<Container>(x, Container::iterator(i));

}

11.3 Function adaptors

Function adaptors work only with function object classes with argument types and result type defined.

11.3.1 Negators
11.3.2 Binders
11.3.3 Adaptors for pointers to functions

Source files: function.h

11.3.1 Negators
Negators not1 and not2 take a unary and a binary predicate correspondingly and return their complements.

template<class Predicate>
class unary negate public unary function<Predicate::argument type,

bool> {

protected:
Predicate pred;

public:
unary negate (const Predicate& x) : pred(x) {}
bool operator() (const argument type& x) const ({

return !pred(x);

}i

template<class Predicate>
unary negate<Predicate> notl (const Predicate& pred) {

return unary negate<Predicate> (pred);

}

template<class Predicate>

class binary negate : public

binary function<Predicate::first argument type,
Predicate::second argument type, bool> {

protected:
Predicate pred;
public:
binary negate(const Predicate& x) : pred(x) {}

bool operator() (const first argument type& x, const
second argument type& y) const {

return !pred(x, vy);

}i

template<class Predicate>
binary negate<Predicate> not2 (const Predicate& pred) {

return binary negate<Predicate>(pred);

11.3.2 Binders

Binders bind1st and bind2nd take a function object f of two arguments and a value x and return a function object of
one argument constructed out of f with the first or second argument correspondingly bound to x. template <class
Operation>

class binderlst : public unary function<Operation::second argument type,
Operation::result type> {

protected:

Operation op;

Operation::first argument type value;
public:

binderlst (const Operation& x, const Operation::first argument typeé&

y)
op(x), value(y) f{}

result type operator () (const argument type& x) const ({

return op (value, x);

}i

template<class Operation, class T>
binderlst<Operation> bindlst (const Operation& op, const T& x) {

return binderlst<Operation>(op, Operation::first argument type(x));

}

template<class Operation>
class binder2nd : public unary function<Operation::first argument type,

Operation::result type> {
protected:
Operation op;
Operation::second argument type value;
public:
binder2nd(const Operationé& x, const Operation::second argument typeé&

y)
op(x), value(y) {}

result type operator () (const argument typeé& x) const ({

return op(x, value);

i

template<class Operation, class T>
binder2nd<Operation> bind2nd (const Operationé& op, const T& x) {

return binder2nd<Operation>(op, Operation::second argument type(x));

}

For example, find _if(v.begin(), v.end(), bind2nd(greater<int>(), 5)) finds the first integer in vector v greater than 5;
find_if(v.begin(), v.end(), bind1st(greater<int>(), 5)) finds the first integer in v less than 5.

11.3.3 Adaptors for pointers to functions
To allow pointers to (unary and binary) functions to work with function adaptors the library provides:

template<class Arg, class Result>

class pointer to unary function public unary function<Arg, Result> {

protected:
Result (*ptr) (Arg);
public:

pointer to unary function() {}
pointer to unary function(Result (*x) (Arg))

ptr(x) {}

Result operator () (Arg x) const { return ptr(x); }

}i

template<class Arg, class Result>
pointer to unary function<Arg, Result> ptr fun(Result (*x) (Arg)) {

return pointer to unary function<Arg, Result>(x);

}

template<class Argl, class Arg2,
class pointer to binary function

class Result>
public binary function<Argl, Arg2,

Result> {
protected:

Result (*ptr) (Argl, Arg2);
public:

pointer to binary function() {}

pointer to binary function(Result (*x) (Argl, Arg2))

ptr(x) {}
Result operator () (Argl x, Arg2 y) const {

return ptr(x, Vy);

bi
template<class Argl, class Arg2, class Result>
pointer to binary function<Argl, Arg2, Result>
ptr fun(Result (*x) (Argl, Arg2)) {
return pointer to binary function<Argl, Arg2, Result>(x);

}
For example, replace if(v.begin(), v.end(), notl(bind2nd(ptr_fun(strcmp), "C")), "C++") replaces all the "C" with

"C++" in sequence v .
Compilation systems that have multiple pointer to function types have to provide additional ptr_fun template

functions.

12 Memory Handling Primitives

To obtain a typed pointer to an uninitialized memory buffer of a given size the following function is defined:

template<class T>
inline T* allocate(ptrdiff t n, T*); // n >= 0

The size (in bytes) of the allocated buffer is no less thann * sizeof (T) .

For every memory model there is a corresponding allocate template function defined with the first argument type
being the distance type of the pointers in the memory model.

For example, if a compilation system supports _huge pointers with the distance type being long long, the following
template function is provided:

template<class T>
inline T _ huge* allocate(long long n, T _ huge *);

Also, the following functions are provided:

template<class T>
inline void deallocate (T* buffer);

template<class T1l, class T2>

inline void construct (Tl* p, const T2& value) {
new (p) T1l(value);

}

template<class T>
inline void destroy (T* pointer) ({
pointer->~T();

}

deallocate frees the buffer allocated by allocate. For every memory model there are corresponding
deallocate, construct and destroy template functions defined with the first argument type being the pointer type of
the memory model.

template<class T>
pair<T*, ptrdiff t> get temporary buffer(ptrdiff t n, T*);

template<class T>
void return temporary buffer (T* p);

get temporary buffer finds the largest buffer not greater than n* sizeof (T), and returns a pair
consisting of the address and the capacity (in the units of sizeof (T)) of the buffer.
return temporary buffer returns the buffer allocated by get temporary buffer.

Source files: defalloc.h

13 Bibliography
M. Ellis and B. Stroustrup, "The Annotated C++ Reference Manual”, Addison-Wesley, Massachusetts, 1990.

D. Kapur, D. R. Musser, and A. A. Stepanov, "Tecton, A Language for Manipulating Generic Objects" Proc. of
Workshop on Program Specification, Aarhus, Denmark, August 1981, Lecture Notes in Computer Science, Springer-
Verlag, vol. 134, 1982.

D. Kapur, D. R. Musser, and A. A. Stepanov, "Operators and Algebraic Structures" Proc. of the Conference on
Functional Programming Languages and Computer Architecture, Portsmouth, New Hampshire, October 1981.

A. Kershenbaum, D. R. Musser, and A. A. Stepanov, "Higher Order Imperative Programming" Technical Report 88-
10, Rensselaer Polytechnic Institute, April 1988.

A. Koenig, "Associative arrays in C++", Proc. USENIX Conference, San Francisco, CA, June 1988.
A. Koenig, "Applicators, Manipulators, and Function Objects"”, C++ Journal, vol. 1, #1, Summer 1990.

D. R. Musser and A. A. Stepanov, "4 Library of Generic Algorithms in Ada" Proc. of 1987 ACM SIGAda
International Conference, Boston, December, 1987.

D. R. Musser and A. A. Stepanov, "Generic Programming” invited paper, in P. Gianni, Ed., ISSAC 88 Symbolic
and Algebraic Computation Proceedings, Lecture Notes in Computer Science, Springer-Verlag, vol. 358, 1989.

D. R. Musser and A. A. Stepanov, Ada Generic Library, Springer-Verlag, 1989.

D. R. Musser and A. A. Stepanov, "Algorithm-Oriented Generic Libraries" Software Practice and Experience, vol.
24(7), July 1994.

M. Stahl and U. Steinmiiller, "Generic Dynamic Arrays"”, The C++ Report, October 1993.
J. E. Shopiro, "Strings and Lists for C++", AT&T Bell Labs Internal Technical Memorandum, July 1985.

A. A. Stepanov and M. Lee, "The Standard Template Library" Technical Report HPL-94-34, Hewlett- Packard
Laboratories, April 1994.

B. Stroustrup, "The Design and Evolution of C++", Addison-Wesley, Massachusetts, 1994.

